Nuprl Lemma : dot-product_wf
∀[n:ℕ]. ∀[x,y:ℝ^n].  (x ⋅ y ∈ ℝ)
Proof
Definitions occuring in Statement : 
dot-product: x ⋅ y, 
real-vec: ℝ^n, 
real: ℝ, 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
member: t ∈ T
Definitions unfolded in proof : 
real-vec: ℝ^n, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
dot-product: x ⋅ y, 
nat: ℕ, 
so_lambda: λ2x.t[x], 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
and: P ∧ Q, 
ge: i ≥ j , 
all: ∀x:A. B[x], 
decidable: Dec(P), 
or: P ∨ Q, 
uimplies: b supposing a, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
implies: P ⇒ Q, 
not: ¬A, 
top: Top, 
prop: ℙ, 
so_apply: x[s]
Lemmas referenced : 
nat_wf, 
real_wf, 
int_seg_wf, 
lelt_wf, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermVar_wf, 
intformless_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__lt, 
nat_properties, 
subtract-add-cancel, 
rmul_wf, 
subtract_wf, 
rsum_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
lambdaEquality, 
applyEquality, 
dependent_set_memberEquality, 
productElimination, 
independent_pairFormation, 
dependent_functionElimination, 
unionElimination, 
independent_isectElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
because_Cache, 
addEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[x,y:\mBbbR{}\^{}n].    (x  \mcdot{}  y  \mmember{}  \mBbbR{})
Date html generated:
2016_05_18-AM-09_46_59
Last ObjectModification:
2016_01_17-AM-02_49_55
Theory : reals
Home
Index