Nuprl Lemma : rabs-difference-lower-bound

x,y,z:ℝ.  (z < |x y| ⇐⇒ ((z y) < x) ∨ ((z x) < y))


Proof




Definitions occuring in Statement :  rless: x < y rabs: |x| rsub: y radd: b real: all: x:A. B[x] iff: ⇐⇒ Q or: P ∨ Q
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T top: Top iff: ⇐⇒ Q and: P ∧ Q implies:  Q or: P ∨ Q prop: rev_implies:  Q squash: T true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T} uiff: uiff(P;Q) req_int_terms: t1 ≡ t2 false: False not: ¬A

Latex:
\mforall{}x,y,z:\mBbbR{}.    (z  <  |x  -  y|  \mLeftarrow{}{}\mRightarrow{}  ((z  +  y)  <  x)  \mvee{}  ((z  +  x)  <  y))



Date html generated: 2020_05_20-AM-11_02_24
Last ObjectModification: 2019_11_06-PM-05_03_59

Theory : reals


Home Index