Nuprl Lemma : rabs-rleq

x,z:ℝ.  (|x| ≤ ⇐⇒ (-(z) ≤ x) ∧ (x ≤ z))


Proof




Definitions occuring in Statement :  rleq: x ≤ y rabs: |x| rminus: -(x) real: all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T top: Top all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q uiff: uiff(P;Q) uimplies: supposing a prop: rev_implies:  Q rev_uimplies: rev_uimplies(P;Q) cand: c∧ B req_int_terms: t1 ≡ t2 false: False not: ¬A

Latex:
\mforall{}x,z:\mBbbR{}.    (|x|  \mleq{}  z  \mLeftarrow{}{}\mRightarrow{}  (-(z)  \mleq{}  x)  \mwedge{}  (x  \mleq{}  z))



Date html generated: 2020_05_20-AM-11_02_01
Last ObjectModification: 2019_12_12-AM-10_28_13

Theory : reals


Home Index