Nuprl Lemma : rabs-rleq
∀x,z:ℝ.  (|x| ≤ z 
⇐⇒ (-(z) ≤ x) ∧ (x ≤ z))
Proof
Definitions occuring in Statement : 
rleq: x ≤ y
, 
rabs: |x|
, 
rminus: -(x)
, 
real: ℝ
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
top: Top
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
, 
rev_uimplies: rev_uimplies(P;Q)
, 
cand: A c∧ B
, 
req_int_terms: t1 ≡ t2
, 
false: False
, 
not: ¬A
Latex:
\mforall{}x,z:\mBbbR{}.    (|x|  \mleq{}  z  \mLeftarrow{}{}\mRightarrow{}  (-(z)  \mleq{}  x)  \mwedge{}  (x  \mleq{}  z))
Date html generated:
2020_05_20-AM-11_02_01
Last ObjectModification:
2019_12_12-AM-10_28_13
Theory : reals
Home
Index