Nuprl Lemma : rabs-strict-ub

a:ℝ((r0 ≤ a)  (∀x:ℝ(a < |x| ⇐⇒ (a < x) ∨ (a < -(x)))))


Proof




Definitions occuring in Statement :  rleq: x ≤ y rless: x < y rabs: |x| rminus: -(x) int-to-real: r(n) real: all: x:A. B[x] iff: ⇐⇒ Q implies:  Q or: P ∨ Q natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q iff: ⇐⇒ Q and: P ∧ Q member: t ∈ T uall: [x:A]. B[x] prop: rev_implies:  Q or: P ∨ Q guard: {T} uimplies: supposing a rneq: x ≠ y uiff: uiff(P;Q) req_int_terms: t1 ≡ t2 false: False not: ¬A top: Top

Latex:
\mforall{}a:\mBbbR{}.  ((r0  \mleq{}  a)  {}\mRightarrow{}  (\mforall{}x:\mBbbR{}.  (a  <  |x|  \mLeftarrow{}{}\mRightarrow{}  (a  <  x)  \mvee{}  (a  <  -(x)))))



Date html generated: 2020_05_20-AM-11_03_04
Last ObjectModification: 2019_11_11-PM-09_11_46

Theory : reals


Home Index