Nuprl Lemma : rabs-ub

a:ℝ((r0 < a)  (∀x:ℝ(a ≤ |x| ⇐⇒ (a ≤ x) ∨ (a ≤ -(x)))))


Proof




Definitions occuring in Statement :  rleq: x ≤ y rless: x < y rabs: |x| rminus: -(x) int-to-real: r(n) real: all: x:A. B[x] iff: ⇐⇒ Q implies:  Q or: P ∨ Q natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q iff: ⇐⇒ Q and: P ∧ Q member: t ∈ T uall: [x:A]. B[x] prop: rev_implies:  Q or: P ∨ Q uimplies: supposing a guard: {T} uiff: uiff(P;Q) rless: x < y sq_exists: x:A [B[x]] false: False nat_plus: + less_than: a < b squash: T not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] less_than': less_than'(a;b) true: True req_int_terms: t1 ≡ t2 rev_uimplies: rev_uimplies(P;Q) rge: x ≥ y

Latex:
\mforall{}a:\mBbbR{}.  ((r0  <  a)  {}\mRightarrow{}  (\mforall{}x:\mBbbR{}.  (a  \mleq{}  |x|  \mLeftarrow{}{}\mRightarrow{}  (a  \mleq{}  x)  \mvee{}  (a  \mleq{}  -(x)))))



Date html generated: 2020_05_20-AM-11_02_52
Last ObjectModification: 2019_12_14-PM-00_54_52

Theory : reals


Home Index