Nuprl Lemma : radd_comm_eq
∀[a,b:ℝ]. ((a + b) = (b + a) ∈ ℝ)
Proof
Definitions occuring in Statement :
radd: a + b
,
real: ℝ
,
uall: ∀[x:A]. B[x]
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
true: True
,
uimplies: b supposing a
,
all: ∀x:A. B[x]
,
squash: ↓T
,
prop: ℙ
,
subtype_rel: A ⊆r B
,
guard: {T}
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
rev_implies: P
⇐ Q
,
implies: P
⇒ Q
Lemmas referenced :
radd-list_functionality_wrt_permutation,
cons_wf,
real_wf,
nil_wf,
permutation-swap-first2,
equal_wf,
squash_wf,
true_wf,
radd-as-radd-list,
iff_weakening_equal
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
hypothesis,
because_Cache,
sqequalRule,
sqequalHypSubstitution,
isect_memberEquality,
isectElimination,
thin,
hypothesisEquality,
axiomEquality,
natural_numberEquality,
extract_by_obid,
independent_isectElimination,
dependent_functionElimination,
applyEquality,
lambdaEquality,
imageElimination,
equalityTransitivity,
equalitySymmetry,
universeEquality,
imageMemberEquality,
baseClosed,
productElimination,
independent_functionElimination
Latex:
\mforall{}[a,b:\mBbbR{}]. ((a + b) = (b + a))
Date html generated:
2017_10_02-PM-07_15_26
Last ObjectModification:
2017_07_28-AM-07_20_29
Theory : reals
Home
Index