Step
*
1
1
of Lemma
range-sup-property
1. I : {I:Interval| icompact(I)}
2. f : I ⟶ℝ
3. mc : f x continuous for x ∈ I
4. v : ∀f:I ⟶ℝ. (f x continuous for x ∈ I
⇒ (∃y:ℝ. sup(f x(x∈I)) = y))
5. (TERMOF{sup-range:o, 1:l} I) = v ∈ (∀f:I ⟶ℝ. (f[x] continuous for x ∈ I
⇒ (∃y:ℝ. sup(f(x)(x∈I)) = y)))
⊢ sup(f x(x∈I)) = fst((v (λx.(f x)) mc))
BY
{ (GenConclAtAddr [2;1] THEN D (-2) THEN All Reduce THEN Auto) }
Latex:
Latex:
1. I : \{I:Interval| icompact(I)\}
2. f : I {}\mrightarrow{}\mBbbR{}
3. mc : f x continuous for x \mmember{} I
4. v : \mforall{}f:I {}\mrightarrow{}\mBbbR{}. (f x continuous for x \mmember{} I {}\mRightarrow{} (\mexists{}y:\mBbbR{}. sup(f x(x\mmember{}I)) = y))
5. (TERMOF\{sup-range:o, 1:l\} I) = v
\mvdash{} sup(f x(x\mmember{}I)) = fst((v (\mlambda{}x.(f x)) mc))
By
Latex:
(GenConclAtAddr [2;1] THEN D (-2) THEN All Reduce THEN Auto)
Home
Index