Step
*
1
of Lemma
range-sup_wf
1. I : Interval
2. icompact(I)
3. f : I ⟶ℝ
4. mc : f x continuous for x ∈ I
⊢ TERMOF{sup-range:o, 1:l} I (λx.(f x)) ∈ λx.(f x)[x] continuous for x ∈ I ⟶ (∃y:ℝ. sup(λx.(f x)(x)(x∈I)) = y)
BY
{ xxxRepUR ``so_apply r-ap`` 0xxx }
1
1. I : Interval
2. icompact(I)
3. f : I ⟶ℝ
4. mc : f x continuous for x ∈ I
⊢ TERMOF{sup-range:o, 1:l} I (λx.(f x)) ∈ f x continuous for x ∈ I ⟶ (∃y:ℝ. sup(f x(x∈I)) = y)
Latex:
Latex:
1. I : Interval
2. icompact(I)
3. f : I {}\mrightarrow{}\mBbbR{}
4. mc : f x continuous for x \mmember{} I
\mvdash{} TERMOF\{sup-range:o, 1:l\} I (\mlambda{}x.(f x)) \mmember{} \mlambda{}x.(f x)[x] continuous for x \mmember{} I
{}\mrightarrow{} (\mexists{}y:\mBbbR{}. sup(\mlambda{}x.(f x)(x)(x\mmember{}I)) = y)
By
Latex:
xxxRepUR ``so\_apply r-ap`` 0xxx
Home
Index