Step
*
of Lemma
range_sup-const
∀I:{I:Interval| icompact(I)} . ∀[c:ℝ]. (sup{c | x ∈ I} = c)
BY
{ (InstLemma `range_sup-bound` []
THEN ParallelLast'
THEN (D 0 THENA Auto)
THEN (InstHyp [⌜λ2x.c⌝;⌜c⌝] (-2)⋅ THENA Auto)
THEN (InstLemma `range_sup-property` [⌜I⌝;λ2x.c]⋅ THENA Auto)
THEN D -1
THEN (Assert ⌜c ≤ sup{c | x ∈ I}⌝⋅ THENM EAuto 1)) }
1
.....assertion.....
1. I : {I:Interval| icompact(I)}
2. ∀f:{f:I ⟶ℝ| ifun(f;I)} . ∀[c:ℝ]. sup{f[x] | x ∈ I} ≤ c supposing ∀x:ℝ. ((x ∈ I)
⇒ (f[x] ≤ c))
3. c : ℝ
4. sup{c | x ∈ I} ≤ c
5. c(x∈I) ≤ sup{c | x ∈ I}
6. ∀e:ℝ. ((r0 < e)
⇒ (∃x:ℝ. ((x ∈ c(x∈I)) ∧ ((sup{c | x ∈ I} - e) < x))))
⊢ c ≤ sup{c | x ∈ I}
Latex:
Latex:
\mforall{}I:\{I:Interval| icompact(I)\} . \mforall{}[c:\mBbbR{}]. (sup\{c | x \mmember{} I\} = c)
By
Latex:
(InstLemma `range\_sup-bound` []
THEN ParallelLast'
THEN (D 0 THENA Auto)
THEN (InstHyp [\mkleeneopen{}\mlambda{}\msubtwo{}x.c\mkleeneclose{};\mkleeneopen{}c\mkleeneclose{}] (-2)\mcdot{} THENA Auto)
THEN (InstLemma `range\_sup-property` [\mkleeneopen{}I\mkleeneclose{};\mlambda{}\msubtwo{}x.c]\mcdot{} THENA Auto)
THEN D -1
THEN (Assert \mkleeneopen{}c \mleq{} sup\{c | x \mmember{} I\}\mkleeneclose{}\mcdot{} THENM EAuto 1))
Home
Index