Nuprl Lemma : range_sup_functionality

I:{I:Interval| icompact(I)} . ∀f:{x:ℝx ∈ I}  ⟶ ℝ.
  ∀g:{x:ℝx ∈ I}  ⟶ ℝsup{f[x] x ∈ I} sup{g[x] x ∈ I} supposing ∀x:{x:ℝx ∈ I} (f[x] g[x]) 
  supposing ∀x,y:{x:ℝx ∈ I} .  ((x y)  (f[x] f[y]))


Proof




Definitions occuring in Statement :  range_sup: sup{f[x] x ∈ I} icompact: icompact(I) i-member: r ∈ I interval: Interval req: y real: uimplies: supposing a so_apply: x[s] all: x:A. B[x] implies:  Q set: {x:A| B[x]}  function: x:A ⟶ B[x]
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uimplies: supposing a uall: [x:A]. B[x] prop: so_apply: x[s] implies:  Q uiff: uiff(P;Q) and: P ∧ Q cand: c∧ B exists: x:A. B[x] rev_uimplies: rev_uimplies(P;Q)

Latex:
\mforall{}I:\{I:Interval|  icompact(I)\}  .  \mforall{}f:\{x:\mBbbR{}|  x  \mmember{}  I\}    {}\mrightarrow{}  \mBbbR{}.
    \mforall{}g:\{x:\mBbbR{}|  x  \mmember{}  I\}    {}\mrightarrow{}  \mBbbR{}
        sup\{f[x]  |  x  \mmember{}  I\}  =  sup\{g[x]  |  x  \mmember{}  I\}  supposing  \mforall{}x:\{x:\mBbbR{}|  x  \mmember{}  I\}  .  (f[x]  =  g[x]) 
    supposing  \mforall{}x,y:\{x:\mBbbR{}|  x  \mmember{}  I\}  .    ((x  =  y)  {}\mRightarrow{}  (f[x]  =  f[y]))



Date html generated: 2020_05_20-PM-00_19_26
Last ObjectModification: 2020_01_03-PM-03_33_35

Theory : reals


Home Index