Step * of Lemma range_sup_functionality_wrt_subinterval

No Annotations
I:{I:Interval| icompact(I)} . ∀f:{x:ℝx ∈ I}  ⟶ ℝ.
  ∀J:{J:Interval| icompact(J)} (J ⊆ I   (sup{f[x] x ∈ J} ≤ sup{f[x] x ∈ I})) 
  supposing ∀x,y:{x:ℝx ∈ I} .  ((x y)  (f[x] f[y]))
BY
(Auto THEN BLemma  `range_sup-bound` THEN Auto THEN InstLemma `rleq-range_sup` [⌜I⌝;⌜f⌝;⌜x⌝]⋅ THEN Auto) }


Latex:


Latex:
No  Annotations
\mforall{}I:\{I:Interval|  icompact(I)\}  .  \mforall{}f:\{x:\mBbbR{}|  x  \mmember{}  I\}    {}\mrightarrow{}  \mBbbR{}.
    \mforall{}J:\{J:Interval|  icompact(J)\}  .  (J  \msubseteq{}  I    {}\mRightarrow{}  (sup\{f[x]  |  x  \mmember{}  J\}  \mleq{}  sup\{f[x]  |  x  \mmember{}  I\})) 
    supposing  \mforall{}x,y:\{x:\mBbbR{}|  x  \mmember{}  I\}  .    ((x  =  y)  {}\mRightarrow{}  (f[x]  =  f[y]))


By


Latex:
(Auto
  THEN  BLemma    `range\_sup-bound`
  THEN  Auto
  THEN  InstLemma  `rleq-range\_sup`  [\mkleeneopen{}I\mkleeneclose{};\mkleeneopen{}f\mkleeneclose{};\mkleeneopen{}x\mkleeneclose{}]\mcdot{}
  THEN  Auto)




Home Index