Nuprl Lemma : rat-rleq-cases-ext
∀x,y:ℤ × ℕ+.  ((↓ratreal(x) ≤ ratreal(y)) ∨ (↓ratreal(y) ≤ ratreal(x)))
Proof
Definitions occuring in Statement : 
ratreal: ratreal(r), 
rleq: x ≤ y, 
nat_plus: ℕ+, 
all: ∀x:A. B[x], 
squash: ↓T, 
or: P ∨ Q, 
product: x:A × B[x], 
int: ℤ
Definitions unfolded in proof : 
member: t ∈ T, 
le_int: i ≤z j, 
bnot: ¬bb, 
ifthenelse: if b then t else f fi , 
lt_int: i <z j, 
btrue: tt, 
it: ⋅, 
bfalse: ff, 
rat-rleq-cases, 
uall: ∀[x:A]. B[x], 
so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]), 
so_apply: x[s1;s2;s3;s4], 
so_lambda: λ2x.t[x], 
top: Top, 
so_apply: x[s], 
uimplies: b supposing a
Lemmas referenced : 
rat-rleq-cases, 
lifting-strict-less, 
istype-void, 
strict4-decide
Rules used in proof : 
introduction, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
instantiate, 
extract_by_obid, 
hypothesis, 
sqequalRule, 
thin, 
sqequalHypSubstitution, 
equalityTransitivity, 
equalitySymmetry, 
isectElimination, 
baseClosed, 
isect_memberEquality_alt, 
voidElimination, 
independent_isectElimination
Latex:
\mforall{}x,y:\mBbbZ{}  \mtimes{}  \mBbbN{}\msupplus{}.    ((\mdownarrow{}ratreal(x)  \mleq{}  ratreal(y))  \mvee{}  (\mdownarrow{}ratreal(y)  \mleq{}  ratreal(x)))
Date html generated:
2019_10_30-AM-09_28_32
Last ObjectModification:
2019_01_11-AM-11_46_59
Theory : reals
Home
Index