Nuprl Lemma : rat2real-qmul

[a,b:ℚ].  (rat2real(a b) (rat2real(a) rat2real(b)))


Proof




Definitions occuring in Statement :  rat2real: rat2real(q) req: y rmul: b uall: [x:A]. B[x] qmul: s rationals:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] exists: x:A. B[x] nat_plus: + cand: c∧ B not: ¬A implies:  Q subtype_rel: A ⊆B iff: ⇐⇒ Q and: P ∧ Q prop: uimplies: supposing a mk-rational: mk-rational(a;b) qmul: s so_lambda: λ2x.t[x] so_apply: x[s] callbyvalueall: callbyvalueall has-value: (a)↓ has-valueall: has-valueall(a) ifthenelse: if then else fi  bfalse: ff rat2real: rat2real(q) int_nzero: -o nequal: a ≠ b ∈  satisfiable_int_formula: satisfiable_int_formula(fmla) false: False rneq: x ≠ y guard: {T} or: P ∨ Q rev_implies:  Q decidable: Dec(P) uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q)

Latex:
\mforall{}[a,b:\mBbbQ{}].    (rat2real(a  *  b)  =  (rat2real(a)  *  rat2real(b)))



Date html generated: 2020_05_20-AM-11_01_39
Last ObjectModification: 2020_01_02-PM-02_12_16

Theory : reals


Home Index