Nuprl Lemma : rat2real-qsub

[a,b:ℚ].  (rat2real(a b) (rat2real(a) rat2real(b)))


Proof




Definitions occuring in Statement :  rat2real: rat2real(q) rsub: y req: y uall: [x:A]. B[x] qsub: s rationals:
Definitions unfolded in proof :  qsub: s rat2real: rat2real(q) ifthenelse: if then else fi  btrue: tt int-to-real: r(n) uall: [x:A]. B[x] member: t ∈ T implies:  Q uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a subtype_rel: A ⊆B rev_implies:  Q iff: ⇐⇒ Q all: x:A. B[x] req_int_terms: t1 ≡ t2 false: False not: ¬A top: Top

Latex:
\mforall{}[a,b:\mBbbQ{}].    (rat2real(a  -  b)  =  (rat2real(a)  -  rat2real(b)))



Date html generated: 2020_05_20-AM-11_01_49
Last ObjectModification: 2019_12_09-AM-00_01_30

Theory : reals


Home Index