Step
*
2
of Lemma
ratio-test
1. x : ℕ ⟶ ℝ
2. N : ℕ
3. ∀c:{c:ℝ| (r0 ≤ c) ∧ (c < r1)} . ((∀n:{N...}. (|x[n + 1]| ≤ (c * |x[n]|)))
⇒ Σn.x[n]↓)
4. c : {c:ℝ| r1 < c}
5. ∀n:{N...}. ((c * |x[n]|) < |x[n + 1]|)
⊢ Σn.x[n]↑
BY
{ ((Thin (-3) THEN (Assert r1 < c BY (DVar `c'⋅ THEN Unhide THEN Auto)))
THEN (Assert r0 ≤ c BY
(RWO "-1<" 0 THEN Auto))
THEN RepeatFor 2 (PromoteHyp (-1) (-3)⋅)) }
1
1. x : ℕ ⟶ ℝ
2. N : ℕ
3. c : {c:ℝ| r1 < c}
4. r1 < c
5. r0 ≤ c
6. ∀n:{N...}. ((c * |x[n]|) < |x[n + 1]|)
⊢ Σn.x[n]↑
Latex:
Latex:
1. x : \mBbbN{} {}\mrightarrow{} \mBbbR{}
2. N : \mBbbN{}
3. \mforall{}c:\{c:\mBbbR{}| (r0 \mleq{} c) \mwedge{} (c < r1)\} . ((\mforall{}n:\{N...\}. (|x[n + 1]| \mleq{} (c * |x[n]|))) {}\mRightarrow{} \mSigma{}n.x[n]\mdownarrow{})
4. c : \{c:\mBbbR{}| r1 < c\}
5. \mforall{}n:\{N...\}. ((c * |x[n]|) < |x[n + 1]|)
\mvdash{} \mSigma{}n.x[n]\muparrow{}
By
Latex:
((Thin (-3) THEN (Assert r1 < c BY (DVar `c'\mcdot{} THEN Unhide THEN Auto)))
THEN (Assert r0 \mleq{} c BY
(RWO "-1<" 0 THEN Auto))
THEN RepeatFor 2 (PromoteHyp (-1) (-3)\mcdot{}))
Home
Index