Step
*
1
of Lemma
rational-fun-zero_wf
1. a : ℤ × ℕ+
2. b : ℤ × ℕ+
3. f : (ℤ × ℕ+) ⟶ (ℤ × ℕ+)
4. g : {x:ℝ| x ∈ [ratreal(a), ratreal(b)]} ⟶ ℝ
5. (ratreal(a) ≤ ratreal(b))
∧ (ratreal(f[a]) ≤ r0)
∧ (r0 ≤ ratreal(f[b]))
∧ (∀x,y:{x:ℝ| x ∈ [ratreal(a), ratreal(b)]} . ((x = y)
⇒ (g[x] = g[y])))
∧ (∀r:ℤ × ℕ+. ((ratreal(r) ∈ [ratreal(a), ratreal(b)])
⇒ (g[ratreal(r)] = ratreal(f[r]))))
⊢ rational-fun-zero(f;a;b) ∈ {c:ℝ| (c ∈ [ratreal(a), ratreal(b)]) ∧ (g[c] = r0)}
BY
{ (Assert TERMOF{rational-IVT-2:o, \\v:l} a b ∈ ∀f:(ℤ × ℕ+) ⟶ (ℤ × ℕ+)
∀[g:{x:ℝ| x ∈ [ratreal(a), ratreal(b)]} ⟶ ℝ]
∃c:{c:ℝ| c ∈ [ratreal(a), ratreal(b)]} [(g[c] = r0)]
supposing (ratreal(a) ≤ ratreal(b))
∧ (ratreal(f[a]) ≤ r0)
∧ (r0 ≤ ratreal(f[b]))
∧ (∀x,y:{x:ℝ| x ∈ [ratreal(a), ratreal(b)]} .
((x = y)
⇒ (g[x] = g[y])))
∧ (∀r:ℤ × ℕ+
((ratreal(r) ∈ [ratreal(a), ratreal(b)])
⇒ (g[ratreal(r)] = ratreal(f[r])))) BY
Auto) }
1
1. a : ℤ × ℕ+
2. b : ℤ × ℕ+
3. f : (ℤ × ℕ+) ⟶ (ℤ × ℕ+)
4. g : {x:ℝ| x ∈ [ratreal(a), ratreal(b)]} ⟶ ℝ
5. (ratreal(a) ≤ ratreal(b))
∧ (ratreal(f[a]) ≤ r0)
∧ (r0 ≤ ratreal(f[b]))
∧ (∀x,y:{x:ℝ| x ∈ [ratreal(a), ratreal(b)]} . ((x = y)
⇒ (g[x] = g[y])))
∧ (∀r:ℤ × ℕ+. ((ratreal(r) ∈ [ratreal(a), ratreal(b)])
⇒ (g[ratreal(r)] = ratreal(f[r]))))
6. TERMOF{rational-IVT-2:o, \\v:l} a b ∈ ∀f:(ℤ × ℕ+) ⟶ (ℤ × ℕ+)
∀[g:{x:ℝ| x ∈ [ratreal(a), ratreal(b)]} ⟶ ℝ]
∃c:{c:ℝ| c ∈ [ratreal(a), ratreal(b)]} [(g[c] = r0)]
supposing (ratreal(a) ≤ ratreal(b))
∧ (ratreal(f[a]) ≤ r0)
∧ (r0 ≤ ratreal(f[b]))
∧ (∀x,y:{x:ℝ| x ∈ [ratreal(a), ratreal(b)]} . ((x = y)
⇒ (g[x] = g[y])))
∧ (∀r:ℤ × ℕ+
((ratreal(r) ∈ [ratreal(a), ratreal(b)])
⇒ (g[ratreal(r)] = ratreal(f[r]))))
⊢ rational-fun-zero(f;a;b) ∈ {c:ℝ| (c ∈ [ratreal(a), ratreal(b)]) ∧ (g[c] = r0)}
Latex:
Latex:
1. a : \mBbbZ{} \mtimes{} \mBbbN{}\msupplus{}
2. b : \mBbbZ{} \mtimes{} \mBbbN{}\msupplus{}
3. f : (\mBbbZ{} \mtimes{} \mBbbN{}\msupplus{}) {}\mrightarrow{} (\mBbbZ{} \mtimes{} \mBbbN{}\msupplus{})
4. g : \{x:\mBbbR{}| x \mmember{} [ratreal(a), ratreal(b)]\} {}\mrightarrow{} \mBbbR{}
5. (ratreal(a) \mleq{} ratreal(b))
\mwedge{} (ratreal(f[a]) \mleq{} r0)
\mwedge{} (r0 \mleq{} ratreal(f[b]))
\mwedge{} (\mforall{}x,y:\{x:\mBbbR{}| x \mmember{} [ratreal(a), ratreal(b)]\} . ((x = y) {}\mRightarrow{} (g[x] = g[y])))
\mwedge{} (\mforall{}r:\mBbbZ{} \mtimes{} \mBbbN{}\msupplus{}. ((ratreal(r) \mmember{} [ratreal(a), ratreal(b)]) {}\mRightarrow{} (g[ratreal(r)] = ratreal(f[r]))))
\mvdash{} rational-fun-zero(f;a;b) \mmember{} \{c:\mBbbR{}| (c \mmember{} [ratreal(a), ratreal(b)]) \mwedge{} (g[c] = r0)\}
By
Latex:
(Assert TERMOF\{rational-IVT-2:o, \mbackslash{}\mbackslash{}v:l\} a b \mmember{} \mforall{}f:(\mBbbZ{} \mtimes{} \mBbbN{}\msupplus{}) {}\mrightarrow{} (\mBbbZ{} \mtimes{} \mBbbN{}\msupplus{})
\mforall{}[g:\{x:\mBbbR{}| x \mmember{} [ratreal(a), ratreal(b)]\} {}\mrightarrow{} \mBbbR{}]
\mexists{}c:\{c:\mBbbR{}| c \mmember{} [ratreal(a), ratreal(b)]\} [(g[c] = r\000C0)]
supposing (ratreal(a) \mleq{} ratreal(b))
\mwedge{} (ratreal(f[a]) \mleq{} r0)
\mwedge{} (r0 \mleq{} ratreal(f[b]))
\mwedge{} (\mforall{}x,y:\{x:\mBbbR{}| x \mmember{} [ratreal(a), ratreal(b)]\} .
((x = y) {}\mRightarrow{} (g[x] = g[y])))
\mwedge{} (\mforall{}r:\mBbbZ{} \mtimes{} \mBbbN{}\msupplus{}
((ratreal(r) \mmember{} [ratreal(a), ratreal(b)])
{}\mRightarrow{} (g[ratreal(r)] = ratreal(f[r])))) BY
Auto)
Home
Index