Nuprl Lemma : rational-upper-approx-as-rat2real
∀x:ℝ. ∀n:ℕ+. ∃q:ℚ. (above x within 1/n = rat2real(q))
Proof
Definitions occuring in Statement :
rational-upper-approx: above x within 1/n
,
rat2real: rat2real(q)
,
req: x = y
,
real: ℝ
,
nat_plus: ℕ+
,
all: ∀x:A. B[x]
,
exists: ∃x:A. B[x]
,
rationals: ℚ
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
rational-upper-approx: above x within 1/n
,
has-value: (a)↓
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
nat_plus: ℕ+
,
real: ℝ
,
decidable: Dec(P)
,
or: P ∨ Q
,
not: ¬A
,
implies: P
⇒ Q
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
false: False
,
top: Top
,
and: P ∧ Q
,
prop: ℙ
,
subtype_rel: A ⊆r B
,
int_nzero: ℤ-o
,
nequal: a ≠ b ∈ T
,
rneq: x ≠ y
,
guard: {T}
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
rat2real: rat2real(q)
,
ifthenelse: if b then t else f fi
,
btrue: tt
,
uiff: uiff(P;Q)
,
rev_uimplies: rev_uimplies(P;Q)
Latex:
\mforall{}x:\mBbbR{}. \mforall{}n:\mBbbN{}\msupplus{}. \mexists{}q:\mBbbQ{}. (above x within 1/n = rat2real(q))
Date html generated:
2020_05_20-AM-11_03_41
Last ObjectModification:
2019_11_21-AM-11_04_08
Theory : reals
Home
Index