Nuprl Lemma : rclose-or-sep_wf

[K:ℕ+]. ∀[x,y:ℝ].
  (rclose-or-sep(K;x;y) ∈ {i:ℕ3| 
                           ((i 1 ∈ ℤ ((r1/r(K)) < (y x)))
                           ∧ ((i 2 ∈ ℤ ((r1/r(K)) < (x y)))
                           ∧ ((i 0 ∈ ℤ (|x y| < (r(2)/r(K))))} )


Proof




Definitions occuring in Statement :  rclose-or-sep: rclose-or-sep(K;x;y) rdiv: (x/y) rless: x < y rabs: |x| rsub: y int-to-real: r(n) real: int_seg: {i..j-} nat_plus: + uall: [x:A]. B[x] implies:  Q and: P ∧ Q member: t ∈ T set: {x:A| B[x]}  natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T rclose-or-sep: rclose-or-sep(K;x;y) reals-close-or-rneq-ext subtype_rel: A ⊆B all: x:A. B[x] so_lambda: λ2x.t[x] prop: and: P ∧ Q implies:  Q uimplies: supposing a rneq: x ≠ y guard: {T} or: P ∨ Q iff: ⇐⇒ Q rev_implies:  Q nat_plus: + decidable: Dec(P) not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top so_apply: x[s] sq_exists: x:A [B[x]] cand: c∧ B int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B less_than: a < b squash: T

Latex:
\mforall{}[K:\mBbbN{}\msupplus{}].  \mforall{}[x,y:\mBbbR{}].
    (rclose-or-sep(K;x;y)  \mmember{}  \{i:\mBbbN{}3| 
                                                      ((i  =  1)  {}\mRightarrow{}  ((r1/r(K))  <  (y  -  x)))
                                                      \mwedge{}  ((i  =  2)  {}\mRightarrow{}  ((r1/r(K))  <  (x  -  y)))
                                                      \mwedge{}  ((i  =  0)  {}\mRightarrow{}  (|x  -  y|  <  (r(2)/r(K))))\}  )



Date html generated: 2020_05_20-AM-11_06_13
Last ObjectModification: 2019_11_06-PM-05_17_58

Theory : reals


Home Index