Nuprl Lemma : rclose-or-sep_wf
∀[K:ℕ+]. ∀[x,y:ℝ].
(rclose-or-sep(K;x;y) ∈ {i:ℕ3|
((i = 1 ∈ ℤ)
⇒ ((r1/r(K)) < (y - x)))
∧ ((i = 2 ∈ ℤ)
⇒ ((r1/r(K)) < (x - y)))
∧ ((i = 0 ∈ ℤ)
⇒ (|x - y| < (r(2)/r(K))))} )
Proof
Definitions occuring in Statement :
rclose-or-sep: rclose-or-sep(K;x;y)
,
rdiv: (x/y)
,
rless: x < y
,
rabs: |x|
,
rsub: x - y
,
int-to-real: r(n)
,
real: ℝ
,
int_seg: {i..j-}
,
nat_plus: ℕ+
,
uall: ∀[x:A]. B[x]
,
implies: P
⇒ Q
,
and: P ∧ Q
,
member: t ∈ T
,
set: {x:A| B[x]}
,
natural_number: $n
,
int: ℤ
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
rclose-or-sep: rclose-or-sep(K;x;y)
,
reals-close-or-rneq-ext,
subtype_rel: A ⊆r B
,
all: ∀x:A. B[x]
,
so_lambda: λ2x.t[x]
,
prop: ℙ
,
and: P ∧ Q
,
implies: P
⇒ Q
,
uimplies: b supposing a
,
rneq: x ≠ y
,
guard: {T}
,
or: P ∨ Q
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
nat_plus: ℕ+
,
decidable: Dec(P)
,
not: ¬A
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
false: False
,
top: Top
,
so_apply: x[s]
,
sq_exists: ∃x:A [B[x]]
,
cand: A c∧ B
,
int_seg: {i..j-}
,
lelt: i ≤ j < k
,
le: A ≤ B
,
less_than: a < b
,
squash: ↓T
Latex:
\mforall{}[K:\mBbbN{}\msupplus{}]. \mforall{}[x,y:\mBbbR{}].
(rclose-or-sep(K;x;y) \mmember{} \{i:\mBbbN{}3|
((i = 1) {}\mRightarrow{} ((r1/r(K)) < (y - x)))
\mwedge{} ((i = 2) {}\mRightarrow{} ((r1/r(K)) < (x - y)))
\mwedge{} ((i = 0) {}\mRightarrow{} (|x - y| < (r(2)/r(K))))\} )
Date html generated:
2020_05_20-AM-11_06_13
Last ObjectModification:
2019_11_06-PM-05_17_58
Theory : reals
Home
Index