Step
*
1
of Lemma
real-approx
1. x : ℝ
2. n : ℕ+
3. r(2 * n) = |r(2 * n)|
⊢ |-(r(x n)) + (r(2 * n) * x)| ≤ r(2)
BY
{ (TACTIC:Unfold `rleq` 0
THEN (BLemma `rnonneg-iff` THENA Auto)
THEN Unfold `rsub` 0
THEN (RWO "radd-bdd-diff" 0 THENA Auto)
THEN Fold `reg-seq-add` 0
THEN (RWO "radd-bdd-diff" 0 THENA (Try (Complete (Auto)) THEN RepUR ``rminus rabs rmax`` 0 THEN Auto))
THEN Try (Fold `reg-seq-add` 0)
THEN (RWO "rmul-bdd-diff-reg-seq-mul" 0
THENA (Try (Complete (Auto)) THEN Try ((RepUR ``rminus rabs rmax`` 0 THEN Complete (Auto))⋅))
)) }
1
1. x : ℝ
2. n : ℕ+
3. r(2 * n) = |r(2 * n)|
⊢ rnonneg2(reg-seq-add(r(2);-(|reg-seq-add(-(r(x n));reg-seq-mul(r(2 * n);x))|)))
Latex:
Latex:
1. x : \mBbbR{}
2. n : \mBbbN{}\msupplus{}
3. r(2 * n) = |r(2 * n)|
\mvdash{} |-(r(x n)) + (r(2 * n) * x)| \mleq{} r(2)
By
Latex:
(TACTIC:Unfold `rleq` 0
THEN (BLemma `rnonneg-iff` THENA Auto)
THEN Unfold `rsub` 0
THEN (RWO "radd-bdd-diff" 0 THENA Auto)
THEN Fold `reg-seq-add` 0
THEN (RWO "radd-bdd-diff" 0
THENA (Try (Complete (Auto)) THEN RepUR ``rminus rabs rmax`` 0 THEN Auto)
)
THEN Try (Fold `reg-seq-add` 0)
THEN (RWO "rmul-bdd-diff-reg-seq-mul" 0
THENA (Try (Complete (Auto)) THEN Try ((RepUR ``rminus rabs rmax`` 0 THEN Complete (Auto))\mcdot{}))
))
Home
Index