Step * 2 1 2 2 of Lemma real-binomial


1. : ℤ
2. 0 < n
3. ∀[a,b:ℝ].  (a b^n = Σ{r(choose(n 1;i)) a^n b^i 0≤i≤1})
4. : ℝ
5. : ℝ
6. Σ{(r(choose(n 1;i)) a^n b^i) 0≤i≤1} = Σ{r(choose(n 1;i)) a^n b^i 0≤i≤1}
7. Σ{(r(choose(n 1;i)) a^n b^i) 0≤i≤1} = Σ{r(choose(n 1;i 1)) a^n b^i 1≤i≤n}
⊢ {(r(choose(n 1;i)) a^n b^i) 0≤i≤1}
+ Σ{(r(choose(n 1;i)) a^n b^i) 0≤i≤1})
= Σ{r(choose(n;i)) a^n b^i 0≤i≤n}
BY
TACTIC:(RWO  "-1 -2" THEN Auto THEN RW (AddrC [2] (RecUnfoldC `choose`)) 0) }

1
1. : ℤ
2. 0 < n
3. ∀[a,b:ℝ].  (a b^n = Σ{r(choose(n 1;i)) a^n b^i 0≤i≤1})
4. : ℝ
5. : ℝ
6. Σ{(r(choose(n 1;i)) a^n b^i) 0≤i≤1} = Σ{r(choose(n 1;i)) a^n b^i 0≤i≤1}
7. Σ{(r(choose(n 1;i)) a^n b^i) 0≤i≤1} = Σ{r(choose(n 1;i 1)) a^n b^i 1≤i≤n}
⊢ {r(choose(n 1;i)) a^n b^i 0≤i≤1} + Σ{r(choose(n 1;i 1)) a^n b^i 1≤i≤n})
= Σ{r(if (i =z 0) ∨b(i =z n) then else choose(n 1;i 1) choose(n 1;i) fi a^n b^i 0≤i≤n}


Latex:


Latex:

1.  n  :  \mBbbZ{}
2.  0  <  n
3.  \mforall{}[a,b:\mBbbR{}].    (a  +  b\^{}n  -  1  =  \mSigma{}\{r(choose(n  -  1;i))  *  a\^{}n  -  1  -  i  *  b\^{}i  |  0\mleq{}i\mleq{}n  -  1\})
4.  a  :  \mBbbR{}
5.  b  :  \mBbbR{}
6.  \mSigma{}\{(r(choose(n  -  1;i))  *  a\^{}n  -  1  -  i  *  b\^{}i)  *  a  |  0\mleq{}i\mleq{}n  -  1\}
=  \mSigma{}\{r(choose(n  -  1;i))  *  a\^{}n  -  i  *  b\^{}i  |  0\mleq{}i\mleq{}n  -  1\}
7.  \mSigma{}\{(r(choose(n  -  1;i))  *  a\^{}n  -  1  -  i  *  b\^{}i)  *  b  |  0\mleq{}i\mleq{}n  -  1\}
=  \mSigma{}\{r(choose(n  -  1;i  -  1))  *  a\^{}n  -  i  *  b\^{}i  |  1\mleq{}i\mleq{}n\}
\mvdash{}  (\mSigma{}\{(r(choose(n  -  1;i))  *  a\^{}n  -  1  -  i  *  b\^{}i)  *  a  |  0\mleq{}i\mleq{}n  -  1\}
+  \mSigma{}\{(r(choose(n  -  1;i))  *  a\^{}n  -  1  -  i  *  b\^{}i)  *  b  |  0\mleq{}i\mleq{}n  -  1\})
=  \mSigma{}\{r(choose(n;i))  *  a\^{}n  -  i  *  b\^{}i  |  0\mleq{}i\mleq{}n\}


By


Latex:
TACTIC:(RWO    "-1  -2"  0  THEN  Auto  THEN  RW  (AddrC  [2]  (RecUnfoldC  `choose`))  0)




Home Index