Nuprl Lemma : real-continuity-principle_wf
real-continuity-principle() ∈ ℙ
Proof
Definitions occuring in Statement :
real-continuity-principle: real-continuity-principle()
,
prop: ℙ
,
member: t ∈ T
Definitions unfolded in proof :
real-continuity-principle: real-continuity-principle()
,
member: t ∈ T
,
uall: ∀[x:A]. B[x]
,
so_lambda: λ2x.t[x]
,
label: ...$L... t
,
rfun: I ⟶ℝ
,
so_apply: x[s]
,
prop: ℙ
Lemmas referenced :
all_wf,
interval_wf,
rfun_wf,
continuous_wf,
real_wf,
i-member_wf
Rules used in proof :
sqequalSubstitution,
sqequalRule,
sqequalReflexivity,
sqequalTransitivity,
computationStep,
cut,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesis,
lambdaEquality,
hypothesisEquality,
because_Cache,
applyEquality,
setEquality
Latex:
real-continuity-principle() \mmember{} \mBbbP{}
Date html generated:
2016_05_18-AM-10_52_04
Last ObjectModification:
2015_12_27-PM-10_44_24
Theory : reals
Home
Index