Step
*
of Lemma
real-fun-iff-continuous
∀a,b:ℝ. ∀f:[a, b] ⟶ℝ. (real-fun(f;a;b)
⇐⇒ real-cont(f;a;b)) supposing a ≤ b
BY
{ (InstLemma `real-continuity` []
THEN RepeatFor 4 (ParallelLast')
THEN Auto
THEN D 0
THEN Auto
THEN InstLemma `continuous-rneq` [⌜[a, b]⌝;⌜λ2x.f x⌝]⋅
THEN Auto) }
1
.....antecedent.....
1. a : ℝ
2. b : ℝ
3. a ≤ b
4. f : [a, b] ⟶ℝ
5. real-cont(f;a;b) supposing real-fun(f;a;b)
6. real-cont(f;a;b)
7. x : {x:ℝ| x ∈ [a, b]}
8. y : {x:ℝ| x ∈ [a, b]}
9. x = y
⊢ f x continuous for x ∈ [a, b]
2
1. a : ℝ
2. b : ℝ
3. a ≤ b
4. f : [a, b] ⟶ℝ
5. real-cont(f;a;b) supposing real-fun(f;a;b)
6. real-cont(f;a;b)
7. x : {x:ℝ| x ∈ [a, b]}
8. y : {x:ℝ| x ∈ [a, b]}
9. x = y
10. ∀a@0,b:{x:ℝ| x ∈ [a, b]} . (f a@0 ≠ f b
⇒ a@0 ≠ b)
⊢ (f x) = (f y)
Latex:
Latex:
\mforall{}a,b:\mBbbR{}. \mforall{}f:[a, b] {}\mrightarrow{}\mBbbR{}. (real-fun(f;a;b) \mLeftarrow{}{}\mRightarrow{} real-cont(f;a;b)) supposing a \mleq{} b
By
Latex:
(InstLemma `real-continuity` []
THEN RepeatFor 4 (ParallelLast')
THEN Auto
THEN D 0
THEN Auto
THEN InstLemma `continuous-rneq` [\mkleeneopen{}[a, b]\mkleeneclose{};\mkleeneopen{}\mlambda{}\msubtwo{}x.f x\mkleeneclose{}]\mcdot{}
THEN Auto)
Home
Index