Step
*
1
of Lemma
real-fun-uniformly-greater
1. a : ℝ
2. b : {b:ℝ| a ≤ b}
3. f : [a, b] ⟶ℝ
4. real-fun(f;a;b)
5. c : ℝ
6. ∀x:{x:ℝ| x ∈ [a, b]} . (c < (f x))
7. ∃c@0:{c:ℝ| r0 < c} . ∀x:{x:ℝ| x ∈ [a, b]} . (c@0 < ((λx.((f x) - c)) x))
⊢ ∃c':{c':ℝ| c < c'} . ∀x:{x:ℝ| x ∈ [a, b]} . (c' ≤ (f x))
BY
{ (D -1 THEN Reduce -1 THEN (RenameVar `u' (-2) THEN D 0 With ⌜c + u⌝ ) THEN Auto) }
1
1. a : ℝ
2. b : {b:ℝ| a ≤ b}
3. f : [a, b] ⟶ℝ
4. real-fun(f;a;b)
5. c : ℝ
6. ∀x:{x:ℝ| x ∈ [a, b]} . (c < (f x))
7. u : {c:ℝ| r0 < c}
8. ∀x:{x:ℝ| (a ≤ x) ∧ (x ≤ b)} . (u < ((f x) - c))
9. x : {x:ℝ| x ∈ [a, b]}
⊢ (c + u) ≤ (f x)
Latex:
Latex:
1. a : \mBbbR{}
2. b : \{b:\mBbbR{}| a \mleq{} b\}
3. f : [a, b] {}\mrightarrow{}\mBbbR{}
4. real-fun(f;a;b)
5. c : \mBbbR{}
6. \mforall{}x:\{x:\mBbbR{}| x \mmember{} [a, b]\} . (c < (f x))
7. \mexists{}c@0:\{c:\mBbbR{}| r0 < c\} . \mforall{}x:\{x:\mBbbR{}| x \mmember{} [a, b]\} . (c@0 < ((\mlambda{}x.((f x) - c)) x))
\mvdash{} \mexists{}c':\{c':\mBbbR{}| c < c'\} . \mforall{}x:\{x:\mBbbR{}| x \mmember{} [a, b]\} . (c' \mleq{} (f x))
By
Latex:
(D -1 THEN Reduce -1 THEN (RenameVar `u' (-2) THEN D 0 With \mkleeneopen{}c + u\mkleeneclose{} ) THEN Auto)
Home
Index