Nuprl Lemma : real-fun-uniformly-positive
∀a:ℝ. ∀b:{b:ℝ| a ≤ b} . ∀f:[a, b] ⟶ℝ.
(real-fun(f;a;b)
⇒ (∀x:{x:ℝ| x ∈ [a, b]} . (r0 < (f x)))
⇒ (∃c:{c:ℝ| r0 < c} . ∀x:{x:ℝ| x ∈ [a, b]} . (c < (f x))))
Proof
Definitions occuring in Statement :
real-fun: real-fun(f;a;b)
,
rfun: I ⟶ℝ
,
rccint: [l, u]
,
i-member: r ∈ I
,
rleq: x ≤ y
,
rless: x < y
,
int-to-real: r(n)
,
real: ℝ
,
all: ∀x:A. B[x]
,
exists: ∃x:A. B[x]
,
implies: P
⇒ Q
,
set: {x:A| B[x]}
,
apply: f a
,
natural_number: $n
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
member: t ∈ T
,
implies: P
⇒ Q
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
rfun: I ⟶ℝ
,
uimplies: b supposing a
,
rneq: x ≠ y
,
guard: {T}
,
or: P ∨ Q
,
real-fun: real-fun(f;a;b)
,
so_apply: x[s]
,
uiff: uiff(P;Q)
,
and: P ∧ Q
,
rev_uimplies: rev_uimplies(P;Q)
,
exists: ∃x:A. B[x]
,
nat_plus: ℕ+
,
nat: ℕ
,
ge: i ≥ j
,
decidable: Dec(P)
,
not: ¬A
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
false: False
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
rless: x < y
,
sq_exists: ∃x:A [B[x]]
,
cand: A c∧ B
,
sq_stable: SqStable(P)
,
squash: ↓T
,
le: A ≤ B
,
less_than': less_than'(a;b)
,
rdiv: (x/y)
,
req_int_terms: t1 ≡ t2
Latex:
\mforall{}a:\mBbbR{}. \mforall{}b:\{b:\mBbbR{}| a \mleq{} b\} . \mforall{}f:[a, b] {}\mrightarrow{}\mBbbR{}.
(real-fun(f;a;b)
{}\mRightarrow{} (\mforall{}x:\{x:\mBbbR{}| x \mmember{} [a, b]\} . (r0 < (f x)))
{}\mRightarrow{} (\mexists{}c:\{c:\mBbbR{}| r0 < c\} . \mforall{}x:\{x:\mBbbR{}| x \mmember{} [a, b]\} . (c < (f x))))
Date html generated:
2020_05_20-PM-00_22_53
Last ObjectModification:
2020_01_08-AM-10_51_16
Theory : reals
Home
Index