Nuprl Lemma : real-has-valueall
∀[x:ℝ]. has-valueall(x)
Proof
Definitions occuring in Statement : 
real: ℝ, 
has-valueall: has-valueall(a), 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
real: ℝ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
uimplies: b supposing a, 
has-valueall: has-valueall(a), 
has-value: (a)↓, 
exists: ∃x:A. B[x], 
nat_plus: ℕ+, 
less_than: a < b, 
squash: ↓T, 
less_than': less_than'(a;b), 
true: True, 
and: P ∧ Q, 
prop: ℙ
Lemmas referenced : 
function-valueall-type, 
nat_plus_wf, 
valueall-type-has-valueall, 
real_wf, 
less_than_wf, 
int-value-type, 
value-type_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
extract_by_obid, 
isectElimination, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
intEquality, 
independent_isectElimination, 
functionEquality, 
hypothesisEquality, 
axiomSqleEquality, 
dependent_pairFormation, 
dependent_set_memberEquality, 
natural_numberEquality, 
independent_pairFormation, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}[x:\mBbbR{}].  has-valueall(x)
Date html generated:
2017_10_02-PM-07_13_17
Last ObjectModification:
2017_06_01-PM-05_52_33
Theory : reals
Home
Index