Nuprl Lemma : real-matrix-scalar-mul_wf

[a,b:ℕ]. ∀[c:ℝ]. ∀[A:ℝ(a × b)].  (c*A ∈ ℝ(a × b))


Proof




Definitions occuring in Statement :  real-matrix-scalar-mul: c*A rmatrix: (a × b) real: nat: uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  rmatrix: (a × b) uall: [x:A]. B[x] member: t ∈ T real-matrix-scalar-mul: c*A int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B nat:
Lemmas referenced :  rmul_wf int_seg_wf real_wf istype-nat
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation_alt introduction cut lambdaEquality_alt extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality hypothesis universeIsType setElimination rename productElimination natural_numberEquality axiomEquality equalityTransitivity equalitySymmetry functionIsType inhabitedIsType isect_memberEquality_alt isectIsTypeImplies

Latex:
\mforall{}[a,b:\mBbbN{}].  \mforall{}[c:\mBbbR{}].  \mforall{}[A:\mBbbR{}(a  \mtimes{}  b)].    (c*A  \mmember{}  \mBbbR{}(a  \mtimes{}  b))



Date html generated: 2019_10_30-AM-08_19_15
Last ObjectModification: 2019_09_19-AM-11_58_46

Theory : reals


Home Index