Nuprl Lemma : real-ratio-bound_wf

[M:ℕ+]. ∀[x,y:ℝ]. ∀[a,b:{r:ℝr0 < r} ].
  (real-ratio-bound(M;x;y;a;b) ∈ {r:ℝ((x < y)  (r ≤ (a/y x))) ∧ ((y < x)  (r ≤ (b/x y))) ∧ (r0 < r)} )


Proof




Definitions occuring in Statement :  real-ratio-bound: real-ratio-bound(M;x;y;a;b) rdiv: (x/y) rleq: x ≤ y rless: x < y rsub: y int-to-real: r(n) real: nat_plus: + uall: [x:A]. B[x] implies:  Q and: P ∧ Q member: t ∈ T set: {x:A| B[x]}  natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q nat_plus: + decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False prop: real-ratio-bound: real-ratio-bound(M;x;y;a;b) int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B sq_type: SQType(T) guard: {T} eq_int: (i =z j) ifthenelse: if then else fi  bfalse: ff btrue: tt rneq: x ≠ y less_than: a < b squash: T less_than': less_than'(a;b) true: True cand: c∧ B uiff: uiff(P;Q) req_int_terms: t1 ≡ t2 rless: x < y sq_exists: x:A [B[x]] rev_uimplies: rev_uimplies(P;Q) rge: x ≥ y sq_stable: SqStable(P) rdiv: (x/y) top: Top

Latex:
\mforall{}[M:\mBbbN{}\msupplus{}].  \mforall{}[x,y:\mBbbR{}].  \mforall{}[a,b:\{r:\mBbbR{}|  r0  <  r\}  ].
    (real-ratio-bound(M;x;y;a;b)  \mmember{}  \{r:\mBbbR{}| 
                                                                    ((x  <  y)  {}\mRightarrow{}  (r  \mleq{}  (a/y  -  x)))
                                                                    \mwedge{}  ((y  <  x)  {}\mRightarrow{}  (r  \mleq{}  (b/x  -  y)))
                                                                    \mwedge{}  (r0  <  r)\}  )



Date html generated: 2020_05_20-AM-11_07_06
Last ObjectModification: 2020_01_06-PM-00_39_12

Theory : reals


Home Index