Nuprl Lemma : real-separation_wf

[A,B:ℝ ⟶ ℙ].  (real-separation(x.A[x];y.B[y]) ∈ ℙ)


Proof




Definitions occuring in Statement :  real-separation: real-separation(x.A[x];y.B[y]) real: uall: [x:A]. B[x] prop: so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T real-separation: real-separation(x.A[x];y.B[y]) prop: and: P ∧ Q so_lambda: λ2x.t[x] so_apply: x[s] exists: x:A. B[x] or: P ∨ Q all: x:A. B[x]
Lemmas referenced :  real-disjoint_wf real_wf exists_wf all_wf or_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule productEquality extract_by_obid sqequalHypSubstitution isectElimination thin lambdaEquality applyEquality functionExtensionality hypothesisEquality hypothesis because_Cache axiomEquality equalityTransitivity equalitySymmetry functionEquality cumulativity universeEquality isect_memberEquality

Latex:
\mforall{}[A,B:\mBbbR{}  {}\mrightarrow{}  \mBbbP{}].    (real-separation(x.A[x];y.B[y])  \mmember{}  \mBbbP{})



Date html generated: 2017_10_03-AM-10_01_05
Last ObjectModification: 2017_06_30-AM-10_53_57

Theory : reals


Home Index