Step
*
1
1
1
1
of Lemma
real-subset-connected-lemma
.....assertion.....
1. X : ℝ ⟶ ℙ
2. dense-in-interval((-∞, ∞);X)
3. a : {x:ℝ| X x} ⟶ 𝔹
4. b : {x:ℝ| X x} ⟶ 𝔹
5. ∀x:{x:ℝ| X x} . ((↑(a x)) ∨ (↑(b x)))
6. a0 : {x:ℝ| X x}
7. b0 : {x:ℝ| X x}
8. ↑(a a0)
9. ↑(b b0)
10. a0 < b0
⊢ ∀u,v:{x:ℝ| X x} .
((u < v)
⇒ (∃p:{x:ℝ| X x}
(((u < p) ∧ (p < v)) ∧ ((p - u) ≤ ((r(2)/r(3)) * (v - u))) ∧ ((v - p) ≤ ((r(2)/r(3)) * (v - u))))))
BY
{ (Auto
THEN (D 2 With ⌜((r(2) * u) + v/r(3))⌝ THENA Auto)
THEN (D -1 With ⌜(u + (r(2) * v)/r(3))⌝ THENA Auto)
THEN (D -1 THENA (nRMul ⌜r(3)⌝ 0⋅ THEN Auto))
THEN ParallelLast
THEN Auto
THEN (nRMul ⌜r(3)⌝ 0⋅ THENA Auto)) }
1
1. X : ℝ ⟶ ℙ
2. a : {x:ℝ| X x} ⟶ 𝔹
3. b : {x:ℝ| X x} ⟶ 𝔹
4. ∀x:{x:ℝ| X x} . ((↑(a x)) ∨ (↑(b x)))
5. a0 : {x:ℝ| X x}
6. b0 : {x:ℝ| X x}
7. ↑(a a0)
8. ↑(b b0)
9. a0 < b0
10. u : {x:ℝ| X x}
11. v : {x:ℝ| X x}
12. u < v
13. x : ℝ
14. ((r(2) * u) + v/r(3)) < x
15. x < (u + (r(2) * v)/r(3))
16. X x
⊢ (r(3) * u) < (r(3) * x)
2
1. X : ℝ ⟶ ℙ
2. a : {x:ℝ| X x} ⟶ 𝔹
3. b : {x:ℝ| X x} ⟶ 𝔹
4. ∀x:{x:ℝ| X x} . ((↑(a x)) ∨ (↑(b x)))
5. a0 : {x:ℝ| X x}
6. b0 : {x:ℝ| X x}
7. ↑(a a0)
8. ↑(b b0)
9. a0 < b0
10. u : {x:ℝ| X x}
11. v : {x:ℝ| X x}
12. u < v
13. x : ℝ
14. ((r(2) * u) + v/r(3)) < x
15. x < (u + (r(2) * v)/r(3))
16. X x
17. u < x
⊢ (r(3) * x) < (r(3) * v)
3
1. X : ℝ ⟶ ℙ
2. a : {x:ℝ| X x} ⟶ 𝔹
3. b : {x:ℝ| X x} ⟶ 𝔹
4. ∀x:{x:ℝ| X x} . ((↑(a x)) ∨ (↑(b x)))
5. a0 : {x:ℝ| X x}
6. b0 : {x:ℝ| X x}
7. ↑(a a0)
8. ↑(b b0)
9. a0 < b0
10. u : {x:ℝ| X x}
11. v : {x:ℝ| X x}
12. u < v
13. x : ℝ
14. ((r(2) * u) + v/r(3)) < x
15. x < (u + (r(2) * v)/r(3))
16. X x
17. u < x
18. x < v
⊢ ((r(-3) * u) + (r(3) * x)) ≤ ((r(-2) * u) + (r(2) * v))
4
1. X : ℝ ⟶ ℙ
2. a : {x:ℝ| X x} ⟶ 𝔹
3. b : {x:ℝ| X x} ⟶ 𝔹
4. ∀x:{x:ℝ| X x} . ((↑(a x)) ∨ (↑(b x)))
5. a0 : {x:ℝ| X x}
6. b0 : {x:ℝ| X x}
7. ↑(a a0)
8. ↑(b b0)
9. a0 < b0
10. u : {x:ℝ| X x}
11. v : {x:ℝ| X x}
12. u < v
13. x : ℝ
14. ((r(2) * u) + v/r(3)) < x
15. x < (u + (r(2) * v)/r(3))
16. X x
17. u < x
18. x < v
19. (x - u) ≤ ((r(2)/r(3)) * (v - u))
⊢ ((r(3) * v) + (r(-3) * x)) ≤ ((r(-2) * u) + (r(2) * v))
Latex:
Latex:
.....assertion.....
1. X : \mBbbR{} {}\mrightarrow{} \mBbbP{}
2. dense-in-interval((-\minfty{}, \minfty{});X)
3. a : \{x:\mBbbR{}| X x\} {}\mrightarrow{} \mBbbB{}
4. b : \{x:\mBbbR{}| X x\} {}\mrightarrow{} \mBbbB{}
5. \mforall{}x:\{x:\mBbbR{}| X x\} . ((\muparrow{}(a x)) \mvee{} (\muparrow{}(b x)))
6. a0 : \{x:\mBbbR{}| X x\}
7. b0 : \{x:\mBbbR{}| X x\}
8. \muparrow{}(a a0)
9. \muparrow{}(b b0)
10. a0 < b0
\mvdash{} \mforall{}u,v:\{x:\mBbbR{}| X x\} .
((u < v)
{}\mRightarrow{} (\mexists{}p:\{x:\mBbbR{}| X x\}
(((u < p) \mwedge{} (p < v))
\mwedge{} ((p - u) \mleq{} ((r(2)/r(3)) * (v - u)))
\mwedge{} ((v - p) \mleq{} ((r(2)/r(3)) * (v - u))))))
By
Latex:
(Auto
THEN (D 2 With \mkleeneopen{}((r(2) * u) + v/r(3))\mkleeneclose{} THENA Auto)
THEN (D -1 With \mkleeneopen{}(u + (r(2) * v)/r(3))\mkleeneclose{} THENA Auto)
THEN (D -1 THENA (nRMul \mkleeneopen{}r(3)\mkleeneclose{} 0\mcdot{} THEN Auto))
THEN ParallelLast
THEN Auto
THEN (nRMul \mkleeneopen{}r(3)\mkleeneclose{} 0\mcdot{} THENA Auto))
Home
Index