Step
*
1
1
2
of Lemma
real-subset-connected-lemma
1. X : ℝ ⟶ ℙ
2. dense-in-interval((-∞, ∞);X)
3. a : {x:ℝ| X x} ⟶ 𝔹
4. b : {x:ℝ| X x} ⟶ 𝔹
5. ∀x:{x:ℝ| X x} . ((↑(a x)) ∨ (↑(b x)))
6. a0 : {x:ℝ| X x}
7. b0 : {x:ℝ| X x}
8. ↑(a a0)
9. ↑(b b0)
10. a0 < b0
11. ∃h:ℕ ⟶ ({x:ℝ| X x} × {x:ℝ| X x} )
(((fst(h[0])) < (snd(h[0])))
∧ (∀n:ℕ
((↑(a (fst(h[n]))))
∧ (↑(b (snd(h[n]))))
∧ let a,b = h[n]
in ∃p:{x:ℝ| X x}
(((a < p) ∧ (p < b))
∧ (((h[n + 1] = <a, p> ∈ (ℝ × ℝ)) ∧ ((p - a) ≤ ((r(2)/r(3)) * (b - a))))
∨ ((h[n + 1] = <p, b> ∈ (ℝ × ℝ)) ∧ ((b - p) ≤ ((r(2)/r(3)) * (b - a)))))))))
⊢ ∃f,g:ℕ ⟶ {x:ℝ| X x} . ∃x:ℝ. ((∀n:ℕ. (↑(a (f n)))) ∧ (∀n:ℕ. (↑(b (g n)))) ∧ lim n→∞.f n = x ∧ lim n→∞.g n = x)
BY
{ (D -1
THEN (InstLemma `common-limit-squeeze` [⌜λ2n.fst(h[n])⌝;⌜λ2n.snd(h[n])⌝;⌜λ2n.(r(2)/r(3))^n
* ((snd(h[0])) - fst(h[0]))⌝]⋅
THENW Auto
)
) }
1
.....antecedent.....
1. X : ℝ ⟶ ℙ
2. dense-in-interval((-∞, ∞);X)
3. a : {x:ℝ| X x} ⟶ 𝔹
4. b : {x:ℝ| X x} ⟶ 𝔹
5. ∀x:{x:ℝ| X x} . ((↑(a x)) ∨ (↑(b x)))
6. a0 : {x:ℝ| X x}
7. b0 : {x:ℝ| X x}
8. ↑(a a0)
9. ↑(b b0)
10. a0 < b0
11. h : ℕ ⟶ ({x:ℝ| X x} × {x:ℝ| X x} )
12. ((fst(h[0])) < (snd(h[0])))
∧ (∀n:ℕ
((↑(a (fst(h[n]))))
∧ (↑(b (snd(h[n]))))
∧ let a,b = h[n]
in ∃p:{x:ℝ| X x}
(((a < p) ∧ (p < b))
∧ (((h[n + 1] = <a, p> ∈ (ℝ × ℝ)) ∧ ((p - a) ≤ ((r(2)/r(3)) * (b - a))))
∨ ((h[n + 1] = <p, b> ∈ (ℝ × ℝ)) ∧ ((b - p) ≤ ((r(2)/r(3)) * (b - a))))))))
⊢ ∀n:ℕ. (((fst(h[n])) ≤ (fst(h[n + 1]))) ∧ ((fst(h[n + 1])) ≤ (snd(h[n + 1]))) ∧ ((snd(h[n + 1])) ≤ (snd(h[n]))))
2
.....antecedent.....
1. X : ℝ ⟶ ℙ
2. dense-in-interval((-∞, ∞);X)
3. a : {x:ℝ| X x} ⟶ 𝔹
4. b : {x:ℝ| X x} ⟶ 𝔹
5. ∀x:{x:ℝ| X x} . ((↑(a x)) ∨ (↑(b x)))
6. a0 : {x:ℝ| X x}
7. b0 : {x:ℝ| X x}
8. ↑(a a0)
9. ↑(b b0)
10. a0 < b0
11. h : ℕ ⟶ ({x:ℝ| X x} × {x:ℝ| X x} )
12. ((fst(h[0])) < (snd(h[0])))
∧ (∀n:ℕ
((↑(a (fst(h[n]))))
∧ (↑(b (snd(h[n]))))
∧ let a,b = h[n]
in ∃p:{x:ℝ| X x}
(((a < p) ∧ (p < b))
∧ (((h[n + 1] = <a, p> ∈ (ℝ × ℝ)) ∧ ((p - a) ≤ ((r(2)/r(3)) * (b - a))))
∨ ((h[n + 1] = <p, b> ∈ (ℝ × ℝ)) ∧ ((b - p) ≤ ((r(2)/r(3)) * (b - a))))))))
⊢ lim n→∞.(r(2)/r(3))^n * ((snd(h[0])) - fst(h[0])) = r0
3
.....antecedent.....
1. X : ℝ ⟶ ℙ
2. dense-in-interval((-∞, ∞);X)
3. a : {x:ℝ| X x} ⟶ 𝔹
4. b : {x:ℝ| X x} ⟶ 𝔹
5. ∀x:{x:ℝ| X x} . ((↑(a x)) ∨ (↑(b x)))
6. a0 : {x:ℝ| X x}
7. b0 : {x:ℝ| X x}
8. ↑(a a0)
9. ↑(b b0)
10. a0 < b0
11. h : ℕ ⟶ ({x:ℝ| X x} × {x:ℝ| X x} )
12. ((fst(h[0])) < (snd(h[0])))
∧ (∀n:ℕ
((↑(a (fst(h[n]))))
∧ (↑(b (snd(h[n]))))
∧ let a,b = h[n]
in ∃p:{x:ℝ| X x}
(((a < p) ∧ (p < b))
∧ (((h[n + 1] = <a, p> ∈ (ℝ × ℝ)) ∧ ((p - a) ≤ ((r(2)/r(3)) * (b - a))))
∨ ((h[n + 1] = <p, b> ∈ (ℝ × ℝ)) ∧ ((b - p) ≤ ((r(2)/r(3)) * (b - a))))))))
⊢ ∀n:ℕ. r0≤(snd(h[n])) - fst(h[n])≤(r(2)/r(3))^n * ((snd(h[0])) - fst(h[0]))
4
1. X : ℝ ⟶ ℙ
2. dense-in-interval((-∞, ∞);X)
3. a : {x:ℝ| X x} ⟶ 𝔹
4. b : {x:ℝ| X x} ⟶ 𝔹
5. ∀x:{x:ℝ| X x} . ((↑(a x)) ∨ (↑(b x)))
6. a0 : {x:ℝ| X x}
7. b0 : {x:ℝ| X x}
8. ↑(a a0)
9. ↑(b b0)
10. a0 < b0
11. h : ℕ ⟶ ({x:ℝ| X x} × {x:ℝ| X x} )
12. ((fst(h[0])) < (snd(h[0])))
∧ (∀n:ℕ
((↑(a (fst(h[n]))))
∧ (↑(b (snd(h[n]))))
∧ let a,b = h[n]
in ∃p:{x:ℝ| X x}
(((a < p) ∧ (p < b))
∧ (((h[n + 1] = <a, p> ∈ (ℝ × ℝ)) ∧ ((p - a) ≤ ((r(2)/r(3)) * (b - a))))
∨ ((h[n + 1] = <p, b> ∈ (ℝ × ℝ)) ∧ ((b - p) ≤ ((r(2)/r(3)) * (b - a))))))))
13. ∃y:ℝ. (lim n→∞.fst(h[n]) = y ∧ lim n→∞.snd(h[n]) = y)
⊢ ∃f,g:ℕ ⟶ {x:ℝ| X x} . ∃x:ℝ. ((∀n:ℕ. (↑(a (f n)))) ∧ (∀n:ℕ. (↑(b (g n)))) ∧ lim n→∞.f n = x ∧ lim n→∞.g n = x)
Latex:
Latex:
1. X : \mBbbR{} {}\mrightarrow{} \mBbbP{}
2. dense-in-interval((-\minfty{}, \minfty{});X)
3. a : \{x:\mBbbR{}| X x\} {}\mrightarrow{} \mBbbB{}
4. b : \{x:\mBbbR{}| X x\} {}\mrightarrow{} \mBbbB{}
5. \mforall{}x:\{x:\mBbbR{}| X x\} . ((\muparrow{}(a x)) \mvee{} (\muparrow{}(b x)))
6. a0 : \{x:\mBbbR{}| X x\}
7. b0 : \{x:\mBbbR{}| X x\}
8. \muparrow{}(a a0)
9. \muparrow{}(b b0)
10. a0 < b0
11. \mexists{}h:\mBbbN{} {}\mrightarrow{} (\{x:\mBbbR{}| X x\} \mtimes{} \{x:\mBbbR{}| X x\} )
(((fst(h[0])) < (snd(h[0])))
\mwedge{} (\mforall{}n:\mBbbN{}
((\muparrow{}(a (fst(h[n]))))
\mwedge{} (\muparrow{}(b (snd(h[n]))))
\mwedge{} let a,b = h[n]
in \mexists{}p:\{x:\mBbbR{}| X x\}
(((a < p) \mwedge{} (p < b))
\mwedge{} (((h[n + 1] = <a, p>) \mwedge{} ((p - a) \mleq{} ((r(2)/r(3)) * (b - a))))
\mvee{} ((h[n + 1] = <p, b>) \mwedge{} ((b - p) \mleq{} ((r(2)/r(3)) * (b - a)))))))))
\mvdash{} \mexists{}f,g:\mBbbN{} {}\mrightarrow{} \{x:\mBbbR{}| X x\}
\mexists{}x:\mBbbR{}. ((\mforall{}n:\mBbbN{}. (\muparrow{}(a (f n)))) \mwedge{} (\mforall{}n:\mBbbN{}. (\muparrow{}(b (g n)))) \mwedge{} lim n\mrightarrow{}\minfty{}.f n = x \mwedge{} lim n\mrightarrow{}\minfty{}.g n = x)
By
Latex:
(D -1
THEN (InstLemma `common-limit-squeeze` [\mkleeneopen{}\mlambda{}\msubtwo{}n.fst(h[n])\mkleeneclose{};\mkleeneopen{}\mlambda{}\msubtwo{}n.snd(h[n])\mkleeneclose{};\mkleeneopen{}\mlambda{}\msubtwo{}n.(r(2)/r(3))\^{}n
* ((snd(h[0]))
- fst(h[0]))\mkleeneclose{}]\mcdot{}
THENW Auto
)
)
Home
Index