Nuprl Lemma : real-vec-dist-lower-bound

[n:ℕ]. ∀[x,y:ℝ^n].  (|||y|| ||x||| ≤ d(x;y))


Proof




Definitions occuring in Statement :  real-vec-dist: d(x;y) real-vec-norm: ||x|| real-vec: ^n rleq: x ≤ y rabs: |x| rsub: y nat: uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] real-vec-dist: d(x;y) real-vec: ^n int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B nat: uimplies: supposing a req-vec: req-vec(n;x;y) real-vec-sub: Y rleq: x ≤ y rnonneg: rnonneg(x) uiff: uiff(P;Q) subtype_rel: A ⊆B req_int_terms: t1 ≡ t2 false: False implies:  Q not: ¬A rev_uimplies: rev_uimplies(P;Q) iff: ⇐⇒ Q rev_implies:  Q cand: c∧ B

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[x,y:\mBbbR{}\^{}n].    (|||y||  -  ||x|||  \mleq{}  d(x;y))



Date html generated: 2020_05_20-PM-00_41_55
Last ObjectModification: 2019_12_14-PM-03_04_23

Theory : reals


Home Index