Nuprl Lemma : real-vec-dist-lower-bound
∀[n:ℕ]. ∀[x,y:ℝ^n].  (|||y|| - ||x||| ≤ d(x;y))
Proof
Definitions occuring in Statement : 
real-vec-dist: d(x;y), 
real-vec-norm: ||x||, 
real-vec: ℝ^n, 
rleq: x ≤ y, 
rabs: |x|, 
rsub: x - y, 
nat: ℕ, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
all: ∀x:A. B[x], 
real-vec-dist: d(x;y), 
real-vec: ℝ^n, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
and: P ∧ Q, 
le: A ≤ B, 
nat: ℕ, 
uimplies: b supposing a, 
req-vec: req-vec(n;x;y), 
real-vec-sub: X - Y, 
rleq: x ≤ y, 
rnonneg: rnonneg(x), 
uiff: uiff(P;Q), 
subtype_rel: A ⊆r B, 
req_int_terms: t1 ≡ t2, 
false: False, 
implies: P ⇒ Q, 
not: ¬A, 
rev_uimplies: rev_uimplies(P;Q), 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
cand: A c∧ B
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[x,y:\mBbbR{}\^{}n].    (|||y||  -  ||x|||  \mleq{}  d(x;y))
Date html generated:
2020_05_20-PM-00_41_55
Last ObjectModification:
2019_12_14-PM-03_04_23
Theory : reals
Home
Index