Nuprl Lemma : real-vec-mul_functionality

[n:ℕ]. ∀[X,Y:ℝ^n]. ∀[a,b:ℝ].  (req-vec(n;a*X;b*Y)) supposing ((a b) and req-vec(n;X;Y))


Proof




Definitions occuring in Statement :  real-vec-mul: a*X req-vec: req-vec(n;x;y) real-vec: ^n req: y real: nat: uimplies: supposing a uall: [x:A]. B[x]
Definitions unfolded in proof :  real-vec-mul: a*X req-vec: req-vec(n;x;y) real-vec: ^n uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] nat: implies:  Q prop: so_lambda: λ2x.t[x] so_apply: x[s] uiff: uiff(P;Q) and: P ∧ Q rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  int_seg_wf req_witness rmul_wf req_wf all_wf real_wf nat_wf req_weakening req_functionality rmul_functionality
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality setElimination rename hypothesisEquality hypothesis lambdaEquality dependent_functionElimination applyEquality functionExtensionality because_Cache independent_functionElimination isect_memberEquality equalityTransitivity equalitySymmetry functionEquality independent_isectElimination productElimination

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[X,Y:\mBbbR{}\^{}n].  \mforall{}[a,b:\mBbbR{}].    (req-vec(n;a*X;b*Y))  supposing  ((a  =  b)  and  req-vec(n;X;Y))



Date html generated: 2016_10_26-AM-10_17_04
Last ObjectModification: 2016_09_24-PM-09_24_24

Theory : reals


Home Index