Step
*
1
of Lemma
real-vec-norm-diff-bound
1. n : ℕ
2. x : ℝ^n
3. y : ℝ^n
4. ||x|| ≤ (d(x;y) + ||y||)
5. ||y|| ≤ (d(y;x) + ||x||)
⊢ |||x|| - ||y||| ≤ d(x;y)
BY
{ ((RWO "real-vec-dist-symmetry" (-1) THENA Auto) THEN RWO "rabs-difference-bound-rleq" 0 THEN Auto) }
Latex:
Latex:
1. n : \mBbbN{}
2. x : \mBbbR{}\^{}n
3. y : \mBbbR{}\^{}n
4. ||x|| \mleq{} (d(x;y) + ||y||)
5. ||y|| \mleq{} (d(y;x) + ||x||)
\mvdash{} |||x|| - ||y||| \mleq{} d(x;y)
By
Latex:
((RWO "real-vec-dist-symmetry" (-1) THENA Auto) THEN RWO "rabs-difference-bound-rleq" 0 THEN Auto)
Home
Index