Step
*
of Lemma
real-vec-norm_functionality
∀[n:ℕ]. ∀[x,y:ℝ^n]. ||x|| = ||y|| supposing req-vec(n;x;y)
BY
{ (Auto THEN Unfold `real-vec-norm` 0 THEN (Assert x ⋅ x = y ⋅ y BY (BLemma `dot-product_functionality` THEN Auto))) }
1
1. n : ℕ
2. x : ℝ^n
3. y : ℝ^n
4. req-vec(n;x;y)
5. x ⋅ x = y ⋅ y
⊢ rsqrt(x ⋅ x) = rsqrt(y ⋅ y)
Latex:
Latex:
\mforall{}[n:\mBbbN{}]. \mforall{}[x,y:\mBbbR{}\^{}n]. ||x|| = ||y|| supposing req-vec(n;x;y)
By
Latex:
(Auto
THEN Unfold `real-vec-norm` 0
THEN (Assert x \mcdot{} x = y \mcdot{} y BY
(BLemma `dot-product\_functionality` THEN Auto)))
Home
Index