Nuprl Lemma : real-vec-sep-0-iff

n:ℕ. ∀x:ℝ^n.  (x ≠ λi.r0 ⇐⇒ r0 < x⋅x)


Proof




Definitions occuring in Statement :  real-vec-sep: a ≠ b dot-product: x⋅y real-vec: ^n rless: x < y int-to-real: r(n) nat: all: x:A. B[x] iff: ⇐⇒ Q lambda: λx.A[x] natural_number: $n
Definitions unfolded in proof :  real-vec-sep: a ≠ b real-vec-dist: d(x;y) all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q req-vec: req-vec(n;x;y) real-vec-sub: Y member: t ∈ T uall: [x:A]. B[x] nat: real-vec: ^n prop: rev_implies:  Q int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B uiff: uiff(P;Q) uimplies: supposing a req_int_terms: t1 ≡ t2 false: False not: ¬A less_than': less_than'(a;b) subtype_rel: A ⊆B real-vec-norm: ||x||

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}x:\mBbbR{}\^{}n.    (x  \mneq{}  \mlambda{}i.r0  \mLeftarrow{}{}\mRightarrow{}  r0  <  x\mcdot{}x)



Date html generated: 2020_05_20-PM-00_45_54
Last ObjectModification: 2019_12_14-PM-03_03_07

Theory : reals


Home Index