Step
*
of Lemma
real-vec-sep-iff
∀n:ℕ. ∀a,c:ℝ^n. (a ≠ c
⇐⇒ ∃i:ℕn. (r0 < |(a i) - c i|))
BY
{ (Auto
THEN Try ((FLemma `real-vec-sep-implies` [-1] THEN Auto))
THEN Unfold `real-vec-sep` 0
THEN Unfold `real-vec-dist` 0
THEN BLemma `real-vec-norm-positive-iff`
THEN Auto) }
1
1. n : ℕ
2. a : ℝ^n
3. c : ℝ^n
4. ∃i:ℕn. (r0 < |(a i) - c i|)
⊢ ∃i:ℕn. r0 ≠ a - c i
Latex:
Latex:
\mforall{}n:\mBbbN{}. \mforall{}a,c:\mBbbR{}\^{}n. (a \mneq{} c \mLeftarrow{}{}\mRightarrow{} \mexists{}i:\mBbbN{}n. (r0 < |(a i) - c i|))
By
Latex:
(Auto
THEN Try ((FLemma `real-vec-sep-implies` [-1] THEN Auto))
THEN Unfold `real-vec-sep` 0
THEN Unfold `real-vec-dist` 0
THEN BLemma `real-vec-norm-positive-iff`
THEN Auto)
Home
Index