Nuprl Lemma : real-vec-sep-implies

n:ℕ. ∀a,c:ℝ^n.  (a ≠  (∃i:ℕn. (r0 < |(a i) i|)))


Proof




Definitions occuring in Statement :  real-vec-sep: a ≠ b real-vec: ^n rless: x < y rabs: |x| rsub: y int-to-real: r(n) int_seg: {i..j-} nat: all: x:A. B[x] exists: x:A. B[x] implies:  Q apply: a natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q real-vec-sep: a ≠ b member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B nat: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) not: ¬A false: False prop: real-vec-dist: d(x;y) real-vec-norm: ||x|| real-vec-sub: Y dot-product: x⋅y uimplies: supposing a iff: ⇐⇒ Q so_lambda: λ2x.t[x] real-vec: ^n int_seg: {i..j-} lelt: i ≤ j < k rless: x < y sq_exists: x:A [B[x]] nat_plus: + ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] so_apply: x[s] less_than: a < b squash: T

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}a,c:\mBbbR{}\^{}n.    (a  \mneq{}  c  {}\mRightarrow{}  (\mexists{}i:\mBbbN{}n.  (r0  <  |(a  i)  -  c  i|)))



Date html generated: 2020_05_20-PM-00_44_59
Last ObjectModification: 2019_12_14-PM-03_03_49

Theory : reals


Home Index