Nuprl Lemma : real-vec-subtype

[n,m:ℕ].  ℝ^m ⊆r ℝ^n supposing n ≤ m


Proof




Definitions occuring in Statement :  real-vec: ^n nat: uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] le: A ≤ B
Definitions unfolded in proof :  real-vec: ^n uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a nat: so_lambda: λ2x.t[x] so_apply: x[s] and: P ∧ Q le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop: all: x:A. B[x] subtype_rel: A ⊆B
Lemmas referenced :  subtype_rel_dep_function int_seg_wf real_wf int_seg_subtype false_wf subtype_rel_self le_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality setElimination rename hypothesisEquality hypothesis lambdaEquality because_Cache independent_isectElimination independent_pairFormation lambdaFormation axiomEquality isect_memberEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[n,m:\mBbbN{}].    \mBbbR{}\^{}m  \msubseteq{}r  \mBbbR{}\^{}n  supposing  n  \mleq{}  m



Date html generated: 2017_10_03-AM-10_47_09
Last ObjectModification: 2017_06_15-PM-01_01_30

Theory : reals


Home Index