Nuprl Lemma : real-vec-subtype
∀[n,m:ℕ].  ℝ^m ⊆r ℝ^n supposing n ≤ m
Proof
Definitions occuring in Statement : 
real-vec: ℝ^n
, 
nat: ℕ
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
Definitions unfolded in proof : 
real-vec: ℝ^n
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
and: P ∧ Q
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
subtype_rel_dep_function, 
int_seg_wf, 
real_wf, 
int_seg_subtype, 
false_wf, 
subtype_rel_self, 
le_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
lambdaEquality, 
because_Cache, 
independent_isectElimination, 
independent_pairFormation, 
lambdaFormation, 
axiomEquality, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[n,m:\mBbbN{}].    \mBbbR{}\^{}m  \msubseteq{}r  \mBbbR{}\^{}n  supposing  n  \mleq{}  m
Date html generated:
2017_10_03-AM-10_47_09
Last ObjectModification:
2017_06_15-PM-01_01_30
Theory : reals
Home
Index