Nuprl Lemma : real-vec-sum-shift

[k,n,m:ℤ]. ∀[x:Top].  {x[i] n≤i≤m} ~ Σ{x[i k] k≤i≤k})


Proof




Definitions occuring in Statement :  real-vec-sum: Σ{x[k] n≤k≤m} uall: [x:A]. B[x] top: Top so_apply: x[s] subtract: m add: m int: sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T real-vec-sum: Σ{x[k] n≤k≤m} so_lambda: λ2x.t[x] top: Top so_apply: x[s]
Lemmas referenced :  rsum-shift istype-void istype-top istype-int
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality isect_memberEquality_alt voidElimination hypothesis axiomSqEquality isectIsTypeImplies inhabitedIsType

Latex:
\mforall{}[k,n,m:\mBbbZ{}].  \mforall{}[x:Top].    (\mSigma{}\{x[i]  |  n\mleq{}i\mleq{}m\}  \msim{}  \mSigma{}\{x[i  +  k]  |  n  -  k\mleq{}i\mleq{}m  -  k\})



Date html generated: 2019_10_30-AM-08_02_46
Last ObjectModification: 2019_09_18-PM-02_41_04

Theory : reals


Home Index