Nuprl Lemma : rsum-shift

[k,n,m:ℤ]. ∀[x:Top].  {x[i] n≤i≤m} ~ Σ{x[i k] k≤i≤k})


Proof




Definitions occuring in Statement :  rsum: Σ{x[k] n≤k≤m} uall: [x:A]. B[x] top: Top so_apply: x[s] subtract: m add: m int: sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T rsum: Σ{x[k] n≤k≤m} has-value: (a)↓ uimplies: supposing a compose: g and: P ∧ Q prop: so_lambda: λ2x.t[x] so_apply: x[s] subtract: m subtype_rel: A ⊆B all: x:A. B[x] implies:  Q cand: c∧ B less_than: a < b squash: T le: A ≤ B sq_type: SQType(T) guard: {T}

Latex:
\mforall{}[k,n,m:\mBbbZ{}].  \mforall{}[x:Top].    (\mSigma{}\{x[i]  |  n\mleq{}i\mleq{}m\}  \msim{}  \mSigma{}\{x[i  +  k]  |  n  -  k\mleq{}i\mleq{}m  -  k\})



Date html generated: 2020_05_20-AM-11_11_18
Last ObjectModification: 2019_12_28-PM-09_01_21

Theory : reals


Home Index