Step
*
of Lemma
real_polynomial_null
∀t:int_term(). t ≡ "0" supposing inl Ax ≤ null(int_term_to_ipoly(t))
BY
{ (InstLemma `real_term_polynomial` []
THEN ParallelLast'
THEN MoveToConcl (-1)
THEN (GenConclTerm ⌜int_term_to_ipoly(t)⌝⋅ THENA Auto)
THEN RepeatFor 2 ((Thin (-1) THEN D -1))
THEN Reduce 0
THEN Auto) }
1
1. t : int_term()
2. ipolynomial-term([]) ≡ t
3. inl Ax ≤ tt
⊢ t ≡ "0"
2
1. t : int_term()
2. u : iMonomial()
3. v : iMonomial() List
4. ipolynomial-term([u / v]) ≡ t
5. inl Ax ≤ ff
⊢ t ≡ "0"
Latex:
Latex:
\mforall{}t:int\_term(). t \mequiv{} "0" supposing inl Ax \mleq{} null(int\_term\_to\_ipoly(t))
By
Latex:
(InstLemma `real\_term\_polynomial` []
THEN ParallelLast'
THEN MoveToConcl (-1)
THEN (GenConclTerm \mkleeneopen{}int\_term\_to\_ipoly(t)\mkleeneclose{}\mcdot{} THENA Auto)
THEN RepeatFor 2 ((Thin (-1) THEN D -1))
THEN Reduce 0
THEN Auto)
Home
Index