Nuprl Lemma : reals-close-or-rneq

K:ℕ+
  (∃g:ℝ ⟶ ℝ ⟶ ℕ[(∀x,y:ℝ.
                       ((((g y) 1 ∈ ℤ ((r1/r(K)) < (y x)))
                       ∧ (((g y) 2 ∈ ℤ ((r1/r(K)) < (x y)))
                       ∧ (((g y) 0 ∈ ℤ (|x y| < (r(2)/r(K))))))])


Proof




Definitions occuring in Statement :  rdiv: (x/y) rless: x < y rabs: |x| rsub: y int-to-real: r(n) real: int_seg: {i..j-} nat_plus: + all: x:A. B[x] sq_exists: x:A [B[x]] implies:  Q and: P ∧ Q apply: a function: x:A ⟶ B[x] natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B implies:  Q nat_plus: + uimplies: supposing a rneq: x ≠ y guard: {T} or: P ∨ Q iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q decidable: Dec(P) not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False prop: rless: x < y sq_exists: x:A [B[x]] squash: T so_lambda: λ2x.t[x] so_apply: x[s] uiff: uiff(P;Q) req_int_terms: t1 ≡ t2 int_seg: {i..j-} lelt: i ≤ j < k cand: c∧ B sq_stable: SqStable(P) sq_type: SQType(T) true: True

Latex:
\mforall{}K:\mBbbN{}\msupplus{}
    (\mexists{}g:\mBbbR{}  {}\mrightarrow{}  \mBbbR{}  {}\mrightarrow{}  \mBbbN{}3  [(\mforall{}x,y:\mBbbR{}.
                                              ((((g  x  y)  =  1)  {}\mRightarrow{}  ((r1/r(K))  <  (y  -  x)))
                                              \mwedge{}  (((g  x  y)  =  2)  {}\mRightarrow{}  ((r1/r(K))  <  (x  -  y)))
                                              \mwedge{}  (((g  x  y)  =  0)  {}\mRightarrow{}  (|x  -  y|  <  (r(2)/r(K))))))])



Date html generated: 2020_05_20-AM-11_05_37
Last ObjectModification: 2019_12_28-PM-08_15_07

Theory : reals


Home Index