Nuprl Lemma : reg-seq-nexp_wf
∀[x:ℝ]. ∀[k:ℕ+]. (reg-seq-nexp(x;k) ∈ {f:ℕ+ ⟶ ℤ| (k * ((canon-bnd(x)^k - 1 ÷ 2^k - 1) + 1)) + 1-regular-seq(f)} )
Proof
Definitions occuring in Statement :
reg-seq-nexp: reg-seq-nexp(x;k)
,
canon-bnd: canon-bnd(x)
,
real: ℝ
,
regular-int-seq: k-regular-seq(f)
,
fastexp: i^n
,
nat_plus: ℕ+
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
set: {x:A| B[x]}
,
function: x:A ⟶ B[x]
,
divide: n ÷ m
,
multiply: n * m
,
subtract: n - m
,
add: n + m
,
natural_number: $n
,
int: ℤ
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
nat: ℕ
,
nat_plus: ℕ+
,
all: ∀x:A. B[x]
,
decidable: Dec(P)
,
or: P ∨ Q
,
uimplies: b supposing a
,
not: ¬A
,
implies: P
⇒ Q
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
false: False
,
and: P ∧ Q
,
prop: ℙ
,
guard: {T}
,
subtype_rel: A ⊆r B
,
int_nzero: ℤ-o
,
nequal: a ≠ b ∈ T
,
reg-seq-nexp: reg-seq-nexp(x;k)
,
real: ℝ
,
top: Top
,
int_upper: {i...}
,
regular-int-seq: k-regular-seq(f)
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
sq_stable: SqStable(P)
,
le: A ≤ B
,
squash: ↓T
,
true: True
,
sq_type: SQType(T)
,
ge: i ≥ j
,
cand: A c∧ B
,
less_than: a < b
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
subtract: n - m
,
rev_uimplies: rev_uimplies(P;Q)
,
less_than': less_than'(a;b)
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
uiff: uiff(P;Q)
,
bfalse: ff
,
bnot: ¬bb
,
ifthenelse: if b then t else f fi
,
assert: ↑b
Latex:
\mforall{}[x:\mBbbR{}]. \mforall{}[k:\mBbbN{}\msupplus{}].
(reg-seq-nexp(x;k) \mmember{} \{f:\mBbbN{}\msupplus{} {}\mrightarrow{} \mBbbZ{}| (k * ((canon-bnd(x)\^{}k - 1 \mdiv{} 2\^{}k - 1) + 1)) + 1-regular-seq(f)\} )
Date html generated:
2020_05_20-AM-10_55_39
Last ObjectModification:
2020_01_03-AM-00_54_03
Theory : reals
Home
Index