Step
*
1
1
2
1
of Lemma
regular-upto-iff2
.....assertion.....
1. k : ℕ+
2. b : ℕ+
3. x : ℕ+ ⟶ ℤ
4. ∀i,j:ℕ+b + 1. (|(i * (x j)) - j * (x i)| ≤ ((2 * k) * (i + j)))
5. n : ℕ+b + 1
6. m : ℕ+b + 1
7. j : ℕ+b + 1
8. seq-max-lower(k;b;x) = j ∈ ℕ+b + 1
9. ((j * (x n)) - n * (x j)) ≤ ((2 * k) * (j - n))
10. ((j * (x m)) - m * (x j)) ≤ ((2 * k) * (j - m))
11. (((x n) - 2 * k) * (2 * k) * j) ≤ (((x j) - 2 * k) * (2 * k) * n)
⊢ (((x j) - 2 * k) * n) ≤ (((x n) + (2 * k)) * j)
BY
{ ((RWO "absval_ubound" 4 THENA Auto) THEN InstHyp [⌜n⌝;⌜j⌝] 4⋅ THEN Auto) }
Latex:
Latex:
.....assertion.....
1. k : \mBbbN{}\msupplus{}
2. b : \mBbbN{}\msupplus{}
3. x : \mBbbN{}\msupplus{} {}\mrightarrow{} \mBbbZ{}
4. \mforall{}i,j:\mBbbN{}\msupplus{}b + 1. (|(i * (x j)) - j * (x i)| \mleq{} ((2 * k) * (i + j)))
5. n : \mBbbN{}\msupplus{}b + 1
6. m : \mBbbN{}\msupplus{}b + 1
7. j : \mBbbN{}\msupplus{}b + 1
8. seq-max-lower(k;b;x) = j
9. ((j * (x n)) - n * (x j)) \mleq{} ((2 * k) * (j - n))
10. ((j * (x m)) - m * (x j)) \mleq{} ((2 * k) * (j - m))
11. (((x n) - 2 * k) * (2 * k) * j) \mleq{} (((x j) - 2 * k) * (2 * k) * n)
\mvdash{} (((x j) - 2 * k) * n) \mleq{} (((x n) + (2 * k)) * j)
By
Latex:
((RWO "absval\_ubound" 4 THENA Auto) THEN InstHyp [\mkleeneopen{}n\mkleeneclose{};\mkleeneopen{}j\mkleeneclose{}] 4\mcdot{} THEN Auto)
Home
Index