Step
*
4
1
2
of Lemma
regularize-k-regular
1. k : ℕ+
2. f : ℕ+ ⟶ ℤ
3. n : ℕ+
4. ¬↑regular-upto(k;n;f)
5. m : ℕ+
6. ¬↑regular-upto(k;m;f)
7. v : ℕ
8. ¬↑regular-upto(k;v;f)
9. ∀[i:ℕ]. ¬¬↑regular-upto(k;i;f) supposing i < v
10. ¬(v = 1 ∈ ℤ)
11. ¬(v = 0 ∈ ℤ)
12. j : ℕ+
13. (v - 1) = j ∈ ℕ+
14. b : ℕ+
15. seq-min-upper(k;j;f) = b ∈ ℕ+
16. ∀i:ℕ+j + 1. (((i * (f b)) - b * (f i)) ≤ ((2 * k) * (b - i)))
17. b ≤ j
18. a : ℤ
19. ((f b) + (2 * k)) = a ∈ ℤ
⊢ ((r((k * ((m * a) ÷ b * k)) - 2 * k)/r((2 * k) * m)) ≤ (r(a)/r((2 * k) * b)))
∧ ((r(a)/r((2 * k) * b)) ≤ (r((k * ((m * a) ÷ b * k)) + (2 * k))/r((2 * k) * m)))
BY
{ ((InstLemma `rational-approx-property` [⌜(r(a))/(2 * k) * b⌝;⌜m⌝]⋅ THENA Auto)
THEN RepUR ``rational-approx`` -1
THEN Subst' (r(a))/(2 * k) * b m ~ (m * a) ÷ k * b -1) }
1
.....equality.....
1. k : ℕ+
2. f : ℕ+ ⟶ ℤ
3. n : ℕ+
4. ¬↑regular-upto(k;n;f)
5. m : ℕ+
6. ¬↑regular-upto(k;m;f)
7. v : ℕ
8. ¬↑regular-upto(k;v;f)
9. ∀[i:ℕ]. ¬¬↑regular-upto(k;i;f) supposing i < v
10. ¬(v = 1 ∈ ℤ)
11. ¬(v = 0 ∈ ℤ)
12. j : ℕ+
13. (v - 1) = j ∈ ℕ+
14. b : ℕ+
15. seq-min-upper(k;j;f) = b ∈ ℕ+
16. ∀i:ℕ+j + 1. (((i * (f b)) - b * (f i)) ≤ ((2 * k) * (b - i)))
17. b ≤ j
18. a : ℤ
19. ((f b) + (2 * k)) = a ∈ ℤ
20. |(r(a))/(2 * k) * b - (r((r(a))/(2 * k) * b m))/2 * m| ≤ (r1/r(m))
⊢ (r(a))/(2 * k) * b m ~ (m * a) ÷ k * b
2
1. k : ℕ+
2. f : ℕ+ ⟶ ℤ
3. n : ℕ+
4. ¬↑regular-upto(k;n;f)
5. m : ℕ+
6. ¬↑regular-upto(k;m;f)
7. v : ℕ
8. ¬↑regular-upto(k;v;f)
9. ∀[i:ℕ]. ¬¬↑regular-upto(k;i;f) supposing i < v
10. ¬(v = 1 ∈ ℤ)
11. ¬(v = 0 ∈ ℤ)
12. j : ℕ+
13. (v - 1) = j ∈ ℕ+
14. b : ℕ+
15. seq-min-upper(k;j;f) = b ∈ ℕ+
16. ∀i:ℕ+j + 1. (((i * (f b)) - b * (f i)) ≤ ((2 * k) * (b - i)))
17. b ≤ j
18. a : ℤ
19. ((f b) + (2 * k)) = a ∈ ℤ
20. |(r(a))/(2 * k) * b - (r((m * a) ÷ k * b))/2 * m| ≤ (r1/r(m))
⊢ ((r((k * ((m * a) ÷ b * k)) - 2 * k)/r((2 * k) * m)) ≤ (r(a)/r((2 * k) * b)))
∧ ((r(a)/r((2 * k) * b)) ≤ (r((k * ((m * a) ÷ b * k)) + (2 * k))/r((2 * k) * m)))
Latex:
Latex:
1. k : \mBbbN{}\msupplus{}
2. f : \mBbbN{}\msupplus{} {}\mrightarrow{} \mBbbZ{}
3. n : \mBbbN{}\msupplus{}
4. \mneg{}\muparrow{}regular-upto(k;n;f)
5. m : \mBbbN{}\msupplus{}
6. \mneg{}\muparrow{}regular-upto(k;m;f)
7. v : \mBbbN{}
8. \mneg{}\muparrow{}regular-upto(k;v;f)
9. \mforall{}[i:\mBbbN{}]. \mneg{}\mneg{}\muparrow{}regular-upto(k;i;f) supposing i < v
10. \mneg{}(v = 1)
11. \mneg{}(v = 0)
12. j : \mBbbN{}\msupplus{}
13. (v - 1) = j
14. b : \mBbbN{}\msupplus{}
15. seq-min-upper(k;j;f) = b
16. \mforall{}i:\mBbbN{}\msupplus{}j + 1. (((i * (f b)) - b * (f i)) \mleq{} ((2 * k) * (b - i)))
17. b \mleq{} j
18. a : \mBbbZ{}
19. ((f b) + (2 * k)) = a
\mvdash{} ((r((k * ((m * a) \mdiv{} b * k)) - 2 * k)/r((2 * k) * m)) \mleq{} (r(a)/r((2 * k) * b)))
\mwedge{} ((r(a)/r((2 * k) * b)) \mleq{} (r((k * ((m * a) \mdiv{} b * k)) + (2 * k))/r((2 * k) * m)))
By
Latex:
((InstLemma `rational-approx-property` [\mkleeneopen{}(r(a))/(2 * k) * b\mkleeneclose{};\mkleeneopen{}m\mkleeneclose{}]\mcdot{} THENA Auto)
THEN RepUR ``rational-approx`` -1
THEN Subst' (r(a))/(2 * k) * b m \msim{} (m * a) \mdiv{} k * b -1)
Home
Index