Nuprl Lemma : req-iff-not-rneq
∀[x,y:ℝ].  uiff(x = y;¬x ≠ y)
Proof
Definitions occuring in Statement : 
rneq: x ≠ y
, 
req: x = y
, 
real: ℝ
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
not: ¬A
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
prop: ℙ
Latex:
\mforall{}[x,y:\mBbbR{}].    uiff(x  =  y;\mneg{}x  \mneq{}  y)
Date html generated:
2020_05_20-AM-10_57_47
Last ObjectModification:
2020_01_06-PM-00_27_03
Theory : reals
Home
Index