Nuprl Lemma : req-iff-not-rneq

[x,y:ℝ].  uiff(x y;¬x ≠ y)


Proof




Definitions occuring in Statement :  rneq: x ≠ y req: y real: uiff: uiff(P;Q) uall: [x:A]. B[x] not: ¬A
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a not: ¬A implies:  Q false: False all: x:A. B[x] iff: ⇐⇒ Q prop:

Latex:
\mforall{}[x,y:\mBbbR{}].    uiff(x  =  y;\mneg{}x  \mneq{}  y)



Date html generated: 2020_05_20-AM-10_57_47
Last ObjectModification: 2020_01_06-PM-00_27_03

Theory : reals


Home Index