Nuprl Lemma : req-vec_transitivity
∀[n:ℕ]. ∀[x,y,z:ℝ^n].  (req-vec(n;x;z)) supposing (req-vec(n;y;z) and req-vec(n;x;y))
Proof
Definitions occuring in Statement : 
req-vec: req-vec(n;x;y)
, 
real-vec: ℝ^n
, 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
req-vec: req-vec(n;x;y)
, 
real-vec: ℝ^n
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
int_seg_wf, 
req_witness, 
all_wf, 
req_wf, 
real_wf, 
nat_wf, 
req_weakening, 
req_functionality, 
req_transitivity
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
lambdaEquality, 
dependent_functionElimination, 
applyEquality, 
functionExtensionality, 
because_Cache, 
independent_functionElimination, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
independent_isectElimination, 
productElimination
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[x,y,z:\mBbbR{}\^{}n].    (req-vec(n;x;z))  supposing  (req-vec(n;y;z)  and  req-vec(n;x;y))
Date html generated:
2016_10_26-AM-10_15_11
Last ObjectModification:
2016_09_24-PM-09_46_32
Theory : reals
Home
Index