Nuprl Lemma : req_fake_le_antisymmetry
∀[x,y:ℝ].  (x = y) supposing ((y ≤ x) and (x ≤ y))
Proof
Definitions occuring in Statement : 
rleq: x ≤ y, 
req: x = y, 
real: ℝ, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
guard: {T}, 
implies: P ⇒ Q, 
prop: ℙ
Latex:
\mforall{}[x,y:\mBbbR{}].    (x  =  y)  supposing  ((y  \mleq{}  x)  and  (x  \mleq{}  y))
Date html generated:
2020_05_20-AM-10_57_05
Last ObjectModification:
2020_01_02-PM-02_13_43
Theory : reals
Home
Index