Nuprl Lemma : req_int_terms_functionality
∀[x1,x2,y1,y2:int_term()].  (uiff(x1 ≡ y1;x2 ≡ y2)) supposing (y1 ≡ y2 and x1 ≡ x2)
Proof
Definitions occuring in Statement : 
req_int_terms: t1 ≡ t2
, 
int_term: int_term()
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
req_int_terms: t1 ≡ t2
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
rev_uimplies: rev_uimplies(P;Q)
Latex:
\mforall{}[x1,x2,y1,y2:int\_term()].    (uiff(x1  \mequiv{}  y1;x2  \mequiv{}  y2))  supposing  (y1  \mequiv{}  y2  and  x1  \mequiv{}  x2)
Date html generated:
2020_05_20-AM-10_53_55
Last ObjectModification:
2020_01_06-PM-00_27_38
Theory : reals
Home
Index