Nuprl Lemma : req_inversion

[a,b:ℝ].  supposing b


Proof




Definitions occuring in Statement :  req: y real: uimplies: supposing a uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a implies:  Q prop: guard: {T} equiv_rel: EquivRel(T;x,y.E[x; y]) and: P ∧ Q sym: Sym(T;x,y.E[x; y]) all: x:A. B[x]
Lemmas referenced :  req-equiv req_witness req_wf real_wf
Rules used in proof :  cut lemma_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction sqequalHypSubstitution isectElimination thin hypothesisEquality independent_functionElimination hypothesis sqequalRule isect_memberEquality because_Cache equalityTransitivity equalitySymmetry productElimination dependent_functionElimination

Latex:
\mforall{}[a,b:\mBbbR{}].    b  =  a  supposing  a  =  b



Date html generated: 2016_05_18-AM-06_50_31
Last ObjectModification: 2015_12_28-AM-00_28_57

Theory : reals


Home Index