Nuprl Lemma : req_inversion
∀[a,b:ℝ].  b = a supposing a = b
Proof
Definitions occuring in Statement : 
req: x = y
, 
real: ℝ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
guard: {T}
, 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
and: P ∧ Q
, 
sym: Sym(T;x,y.E[x; y])
, 
all: ∀x:A. B[x]
Lemmas referenced : 
req-equiv, 
req_witness, 
req_wf, 
real_wf
Rules used in proof : 
cut, 
lemma_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
sqequalRule, 
isect_memberEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
dependent_functionElimination
Latex:
\mforall{}[a,b:\mBbbR{}].    b  =  a  supposing  a  =  b
Date html generated:
2016_05_18-AM-06_50_31
Last ObjectModification:
2015_12_28-AM-00_28_57
Theory : reals
Home
Index